دنیای علم و تکنولوژی

دنیای علم و تکنولوژی

اخبار و مقالات مربوط به دنیای علم و تکنولوژی ترجمه شده از منابع معتبر
دنیای علم و تکنولوژی

دنیای علم و تکنولوژی

اخبار و مقالات مربوط به دنیای علم و تکنولوژی ترجمه شده از منابع معتبر

لیزر چگونه کار می‌کند؟

"جنگ ستارگان"، "پیشتازان فضا" و "نبردهای بین کهکشانی" فناوری لیزر نقشی محوری در فیلم های علمی تخیلی بازی می کند. شکی نیست که این فیلم ها باعث شده اند لیزر با جنگ افزارهای آینده ارتباط نزدیکی پیدا کند.

اما لیزر نقشی مهم در زندگی روزمره ما نیز دارد. از سی دی خوان ها گرفته تا مته های دندانی و برش فوق سریع فلزات تا سیستم های اندازه گیری پیشرفته همه جا از فناوری لیزر استفاده می شود. برداشتن خالکوبی ها، کاشت مو، جراحی چشم و ... همه از انواع مختلفی لیزر استفاده می کنند.

اما لیزر چیست؟ چه چیزی لیزر را از یک پرتو نور معمولی متمایز می سازد؟ لیزرها چگونه رده بندی می شوند؟

لیزر و ساختار اتم

هر مداری از یک الکترون که به دور هسته اتم خود می گردد، با سطحی از انرژی مرتبط است. وقتی به اتمی انرژی داده شود، برخی الکترونهای ان به سطح انرژی بالاتری می روند. الکترونی که به مداری با سطح انرژی بالاتر رفته تمایل دارذ به وضعیت اصلی خود باز گردد. در این صورت انرژی جذب شده را به صورت یک فوتون (ذرات تشکیل دهنده نور) آزاد می کند.

آزاد شدن فوتوه توسط اتم ها را تقریبا همیشه می توانیم ببینیم. وقتی المنت حرارتی یک دستگاه توستر سرخ می شود، این رنگ توسط اتمهای برانگیخته شده توسط حرارت ایجاد شده که فوتونهایی با طول موج قرمز ساتع می کنند. تصویری که روی صفحه نمایش تلویزیون دیده می شود در اثر نورهایی با رنگ های مختلف است که از اتمهای فسفر برانگیخته ساتع می شوند.

هرچه که تولید نور می کند نور فلورسان، چراغ گاز، لامپ حبابی آن را از طریق عمل الکترونهایی انجام می‌دهد که مدار خود را تغییر داده و فوتون آزاد می کنند.

لیزر ابزاری است که روش آزاد کردن فوتونها توسط اتمهای برانگیخته را کنترل می کند. لیزر مخفف عبارت "تشدید نور توسط انتشار تابش تحریک شده" (Light Amplification by Stimulated Emission of Radiation) است.

لیزر چگونه تولید می‌شود؟

کلید اصلی تولید لیزر یک جفت آینه است که هرکدام در یک انتهای محیط تولید لیزر قرار دارند. فوتونها با طول موج و فاز بسیار ویژه، روی این دو آینه بطور متوالی بازتابش حاصل می کنند و در این فرایند الکترونهای بیشتری را برانگیخته و باعث صعود آنها به سطوح انرژی بالاتر، برگشت به موقعیت پایدار و ساتع ساختن فوتونهای بیشتر با همان طول موج و فاز می کنند.

این اثر آبشاری مداوما رخ می دهد و در فاصله کوتاهی تعداد زیادی فوتون با طول موج و فاز یکسان تولید می شود. یکی از آینه های یاد شده اندکی نفود پذیر است و به بخشی از نور امکان عبور می دهد. فوتونهای بیشمار و تقویت شده در اثر بازتابش متوالی در نقطه ای می توانند از سد این آینه عبور کرده و پرتو نور قدرتمندی ایجاد کنند که به آن لیزر می گوییم.

یکی از نمونه های متداول لیزر، ruby laser یا لیزر یاقوت است. این نوع اسباب تولید لیزر از یک مولد فلاش، یک میله از جنس یاقوت و دو آینه در دو انتها که یکی اندکی عبور دهنده نور است) ساخته شده است. میله یاقوت محیط تولید کننده لیزر و فلاش، مولد انرژی لازم برای برانگیختن الکترونها است.

تصاویر زیر مراحل تولید لیزر در این اسباب را نشان می دهند.

 

فلاش نور قوی به داخل میله یاقوتی می تاباند. نور باعث برانگیخته شدن اتمهای یاقوت می شود.

 

برخی از این اتمها فوتون صادر می کنند.

 

برخی فوتونها در مسیری موازی محور میله یاقوتی حرکت می کنند به گونه ای که پس از برخورد به آینه ها بازتاب می یابند.

با عبور از درون بلور یاقوت، باعث برانگیخته شدن اتمهای بیشتری می شوند.

 

یک نور انباشته شده تک رنگ و تک فاز از درون آینه ناقص (با کمی نفوذپذیری) عبور می کند که همان پرتو لیزر است.

 

انواع لیزر

لیزرها معمولا بر حسب محیط تولید کننده اتمهای برانگیخته شناخته می شوند.

لیزر حالت جامد (solid-state)

ماده مولد لیزر در یک ماده زمینه ای جامد (ماتریکس) پراکنده شده است. این ماتریس زمینه ای از یاقوت یا نئودیمیوم ساخته شده است و می تواند نور مادون قرمز با طول موج 1064 نانومتر تولید کند.

لیزر گازی

متداو ترین محیط های لیزر گازی عبارتند از هلیوم و هلیوم نئون. خروجی آنها یک نور قرمز مرئی است. لیزر دی اکسید کربن می تواند برای برش مواد سخت به کار رود.

لیزر اکسایمر

اینها از گازهای فعال مانند کلر و فلوئور استفاده می کنند که با گازهای خنثا مانند آرگون، کریپتون و زنون مخلوط شده اند. نور تولیدی آنها در محدوده فرابنفش است.

لیزرهای رنگی

این لیزرها از رنگهای آلی مختلط مانند rhodamine 6G در یک حلال مایع یا بصورت مخلوط معلق به عنوان محیط مولد لیزر استفاده می کنند. آنها را می توان در گستره وسیعی از طول موجها تنظیم کرد.

لیزرهای نیمه هادی

که گاهی اوقات لیزر دیودی نامیده می شوند بسیار کوچک و کم توان هستند. در چاپگرهای لیزری یا پخش سی دی از این نوع لیزر استفاده می شود.

رده بندی لیزرها

لیزرها بسته به توان تولیدی از کلاس I تا IV رده بندی می شوند. کلاس IV پرتوان ترین بوده و تابش آن روی یک نقطه خطرناک است.

منبع:

https://science.howstuffworks.com/laser.htm

 

تداخل سنج لیزری چگونه کار می کند؟


تالیف: اصغر ناصری


تداخل سنج (Interferometer) بر اساس ادغام یک یا چند منبع نور و تشکیل یک الگوی تداخلی عمل می کند. الگوهای تداخلی تولید شده توسط تداخل سنج ها شامل اطلاعاتی درباره شی یا پدیده تحت مطالعه هستند. از این ابزارها برای اندازه گیری های بسیار کوچک استفاده می‌شود که به روشهای دیگر قابل انجام نیستند.


تداخل سنج ها که امروزه بطور وسیعی در صنایع و آزمایشگاههای تحقیقاتی استفاده می شوند، در اواخر قرن نوزدهم توسط آلبرت مایکلسون کشف شد. تداخل سنج مایکلسون در سال 1887 در آزمایش معروف مایکلسون-مورلی بکار رفت که برای اثبات یا رد وجود "اتر درخشان" طراحی شده بود، ماده ای که در آن زمان تصور می شد تمامی عالم را پر کرده است. تمامی تداخل سنج های امروزی از این نوع اولیه ناشی شدند که نحوه استفاده از خواص نور در اندازه گیری های بسیار کوچک را مدلل می سازد. ابداع لیزر باعث افزایش توان تداخل سنج ها و امکان اندازه گیری ابعاد بسیار کوچک گردید.


به علت کاربرد وسیع این ابزار، تداخل سنج ها در اشکال و اندازه های بسیار متنوعی موجودند. از این ابزارها برای اندازه گیری هرچیزی از کوچکترین تغییرات در سطح یک ارگانیسم میکروسکوپی تا ساختار انبساط گازها و غبار در عالم دوردست استفاده می شود. یکی از جدیدترین کاربردهای این ابزار در اندازه گیری امواج گرانشی است. با وجود این تنوع در کاربرد، همگی تداخل سنج ها از یک اصل ساده استفاده می کنند و آن برهم نهی پرتوهای نور برای ایجاد یک الگوی تداخلی است.


تداخل سنج مایکلسون از یک پرتوشکاف (beamsplitter) (یک نیم آینه که نیمی از نور را منعکس کرده و نیم دیگر را عبور می دهد) و دو آینه تشکیل شده است. وقتی نور از درون نیم آینه عبور می کند، به دو پرتو با مسیرهای متفاوت تجزیه شده و یکی به سمت آینه اول و دیگری به سمت آینه دوم می رود. پس از بازتاب از روی آینه ها این پرتوها مجددا در محل پرتوشکاف با یکدیگر ترکیب شده و سپس به آشکارساز می رسند. اختلاف مسیر دو پرتو موجب یک اختلاف فاز بین آنها می شود که یک الگوی نوارهای تداخلی ایجاد می‌کند. سپس این الگو توسط آشکارساز تحلیل می شود تا مشخصات 

موج، خواص ماده و یا جابجایی یک آینه نسبت به دیگری اندازه گیری شود (این امر به نوع تنظیم آینه ها بستگی دارد).



سیستم لیزری ML-10 و XL-80 دو تا از متداول ترین سیستم های اندازه گیری تداخلی هستند که توسط شرکت Renishaw ابداع گردیده است. دو آینه اصلی در این سیستم رترورفلکتور (منشورهایی که نور را در جهت موازی مسیر آمدن آن باز می تابانند) نامیده می‌شوند. یکی از این دو به پرتوشکاف وصل شده و آینه ثابت مرجع را می سازد. دیگری آینه متحرک بوده و به بازوی متحرک ماشین وصل می شود تا تغییر فاصله آن نسبت به آینه ثابت مرجع را اندازه گیری کند.


پرتو لیزر تولید شده در پرتوشکاف پلاریزه به دو پرتو (بازتابیده (2) و منتقل شده (3)) تجزیه می شود. این پرتوها از روی آینه ها بازتابانده شده و قبلاز رسیدن به آشکارساز در محل پرتوشکاف با هم ترکیب می شوند. استفاده از رترورفلکتورها، موازی بودن پرتوهای بازتابیده از آینه‌ ثابت مرجع و آینه متحرک تحت اندازه گیری را در هنگام رسیدن به پرتوشکاف تضمین می‌کنند. امواج نور در هنگام ترکیب با یکدیگر یا هم فاز هستند که در این صورت یک تداخل سازنده و نواری روشن خواهیم داشت (دو قله موج یا دو دره موج با هم تلاقی می کنند) و یا در فاز مخالفند که تداخل از نوع مخرب بوده و نواری تاریک بدست می‌دهد (قله یک موج یعنی بیشینه دامنه آن با دره موج دیگر یعنی کمینه دامنه آن تلاقی می کند).



پردازش اپتیکی نور در آشکارساز امکان مشاهده تداخل دو پرتو را می دهد. جابجایی بازوی متحرک ماشین که آینه متحرک به ان متصل است باعث تغییر نسبی فاز دو پرتو می شود. این چرخه تداخل های سازنده و مخرب باعث تغییرات چرخه ای در شدت پرتو نور ترکیبی می‌شود. یک چرخه تغییر در شذت نور از روشن به تاریک هر زمان روی می دهد که بازو و آینه‌ی متحرک 316.5 nm یعنی نصف طول موج لیزر جابجا می‌شود. میزان جابجایی آینه متحرک با استفاده از فرمول زیر و شمارش چرخه ها امکان پذیر است:



که d میزان جابجایی برحسب میکرون، لامبدا طول موج نور لیزر (0.633 میکرون) و N تعداد نوارهای عبور شده است. با درونیابی فاز درون این چرخه‌ها می توان به تفکیک پذیری بالاتر 1 nm رسید.


شکل زیر تنظیم لیزر و آینه ها برای اندازه گیری محورهای افقی مانند X و Y در یک ماشین CNC را نشان می دهد. تنظیم محورهای عمودی مانند Z کمی دشوارتر است و مهارت بیشتری می طلبد.



نویسنده مقاله اصغر ناصری در حال تنظیم تداخل سنج لیزری برای اندازه گیری محور Z یک ماشین CMM

منابع:

http://www.renishaw.com/en/interferometry-explained--7854