ش | ی | د | س | چ | پ | ج |
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 |
پیر فرما (تولد 1601) بنیان گذار نظریه نوین اعداد محسوب می شود. سالهایی از دهه 1630 زندگی او وقف تصحیح کتاب آریثماتیکا اثر کلاسیک دیوفانتوس شده بود. او در حاشیه این کتاب مطلبی یادداشت کرد که به مدت چهارصدسال ریاضی دانان پس از خود را به تکاپو واداشت.
این مطلب پیرامون قضیه ای بود که اکنون به عنوان آخرین قضیه فرما شناخته می شود. مطابق این قضیه معادله دیوفانتین یعنی برای n > 2 در مجموعه اعداد صحیح جواب ندارد. به عنوان مثال هیچ سه عدد صحیح مخالف صفر را نمیتوان یافت که معادله x3 + y3 = z3 را برآورده سازد.
توجه کنید که برای n=2 معادله به فرم x2+y2 = z2 در میآید که همان قضیه فیثاغورث است و می دانیم بیشمار سه تایی صحیح میتوان پیدا کرد که در معادله فوق صدق کنند.
فرما در حاشیه کتاب ادعا کرد که اثبات این قضیه را یافته است. لیکن از ذکر آن خودداری کرد. اکنون تقریبا مطمئنیم که ادعای فرما خیلی دقیق نبوده و احتمالا برای n=3 و n=4 این قضیه را ثابت کرده، لیکن حل عمومی آن را نیافته است.
در سال 1993 انفجاری در عالم ریاضیات اتفاق افتاد. اندرو وایلز با اثبات حالت نیمه پایدار حدس تانی یاما-شیمورا قضیه فرما را بطور پارهای اثبات کرد. متاسفانه رخنههای متعددی در روش اثبات اندرو وایلز پدیدار شد. لیکن در سال 1994 وایلز و تایلور با همکاری هم مسئله را به یک فرمول شماره رده (Class Number Forula) فرو کاسته و اثبات نهایی آخرین قضیه فرما را ارائه کردند.
اثبات قضیه فرما پایان یک دوران در ریاضیات بود. از آن جایی که ابزارهای مورد استفاده در حل این مسئله هنوز در زمان فرما ابداع نشده بودند، بنظر می رسد حل ادعایی فرما واقعیت نداشته باشد.
در یکی از اپیزودهای کارتون معروف The Simpsons، معادله در نقطه ای از پس زمینه تصویر دیده می شود. ممکن است بنظر برسد که این اعداد به ازای n=12 در قضیه فرما صدق میکنند، در حالی که حاصل دو طرف تنها در نه رقم اول با یکدیگر تطابق دارد.
منابعی برای مطالعه بیشتر:
http://mathworld.wolfram.com/FermatsLastTheorem.html
با سلام
یکی از بهترین سایت های دانلود بازی و نرم افزار موبایل مخصوص اندروید
www.niceandroid.ir