ش | ی | د | س | چ | پ | ج |
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
اعداد شگفت انگیز فیبوناچی
میراث امپراتوری روم برای اروپا، سیستم عدد نویسی آن بود که هنوز مورد استفاده قرار میگیرد. اعداد رومی را میتوان در ساعتهای قدیمی و نیز اعلان حق تالیف (copyright) در برنامههای تلویزیونی دید (به عنوا مثال ١٩٩٧ معادل MCMXCVII میباشد.
برای اعداد رومی تا قرن سیزدهم میلادی جایگزینی یافت نشد، تا اینکه فیبوناچی کتاب معروف خود به نام کتاب محاسبات (Liber abaci) را نگاشت.
فیبوناچی که در اصل لئوناردو داپیزا نام داشت، در سال ١١٧٥ میلادی در پیزا به دنیا آمد. او سفرهای زیادی به شمال آفریقا و به بالکان نمود و در سال ١٢٠٠ به پیزا برگشت و دانشی که در طی این سفها آموخته بود را در تالیف کتاب خود بکار گرفت. در این کتاب او سیستم اعشاری عددنویسی را به دنیای لاتین معرفی کرد. اولین فصل بخش نخستین کتاب با این جمله آغاز میشود:
هندیها نه رقم بکار میبرند: ٩ ٨ ٧ ٦ ٥ ٤ ٣ ٢ ١. با این نه رقم و علامت ٠ که در عربی زفیرم خوانده میشود، هر عددی را میتوان نگاشت.
پیدا کردن ریشه معادلات
فیبوناچی قادر به انجام کارهای جالب توجهی در ریاضیات بود. او توانست جواب مثبت معادله زیر را پیدا کند:
جالب توجهتر آنکه او تمام کارهای ریاپی خود را در سیستم شصتگانی بابلیها انجام میداد. او نتیجه حل این معادله را بصورت زیر بیان کرد:
روشی که او در حل این معادله بکار برد نامعلوم است. لیکن او این عمل را سیصد سال پیش از آنکه شخص دیگری قادر به حل معادله شود، انجام داد. جالب اینکه او محاسبه ریشه به سیستم شصتگانی را درست زمانی انجام داد که به دیگران استفاده از سیستم دهدهی را توصیه میکرد!
دنباله فیبوناچی
شاید مشهورترین کار فیبوناچی دنباله عددی معروف او باشد. این دنباله با اعداد ٠ و ١ آغاز میشود. سپس هر عدد از مجموع دو عدد قبلی دنباله بدست میآید. بدین ترتیب دنباله زیر را خواهیم داشت.
1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987,...
شاید پرسیده شود که این اعداد از کجا آمدهاند. در روزگار فیبوناچی، مسابقات ریاضی امری معمول بود. در یکی از این مسابقات بود که سوال زیر مطرح شد:
اگر از یک جفت خرگوش شروع کنیم، چنانچه هرماه هر جفت خرگوش بارور، جفت جدیدی بدنیا آورند که آنها نیز پس از یک ماه به باروری رسند، پس از n ماه چند خرگوش خواهیم داشت؟
تصور کنید که پس از n ماه xn جفت خرگوش داشته باشیم. تعداد جفتها در ماه n+1 ، برابر با xn بعلاوه جفتهای جدید بدنیا آمده خواهد بود. اما جفتهای جدید از جفتهایی بدنیا میآیند که حداقل یکماهه باشند. در نتیجه xn-1 جفت جدید خواهیم داشت (تعداد جفتهای جدید بدنیا آمده برابر با جفتهای آماده به تولید مثل است که یکماه پیش بدنیا آمدهاند):
xn+1 = xn + xn-1
و این اساس قاعده تولید اعداد فیبوناچی را تشکیل میدهد.
در قسمت بعد خواص شگفت انگیز این اعداد را بیان خواهیم کرد.
سلام دوست عزیز وبلاگت واقعا جالبه !!!!!به نظر میاد که تو کتاب راز داوینچی را خوندی چون مطالبت کاملا با مطالب کتاب همخونی دارن راستی من در حال تحقیق در مورد جام مقدسم همون جامی که عیسی در شام اخر از ان شراب نوشید اگر در مورد جام مطلبی پیدا کردی لطفا به من میل کن در ضمن در مورد نشان دیر صهیون این نشان نشان اصلی دیر نیست اگه میلت را بدی نشان اصلی را میل میکنم .................... بازم سر می زنم .
سلام بزرگوار
پستهایی که در مورد فیبوناچی گذاشته بودید خوندم
مرسی لذت بردم