فرایند شکل گیری یک ستاره
یک ستاره از ابر چرخانی از غبار و گاز تشکیل می شود. نیروی گرانش بین ذرات این ابر چرخان، کم کم آن را به صورت یک کره متراکم می کند و افزایش فشار باعث بالا رفتن دمای هسته آن می شود. وقتی دمای درونه این پیش ستاره به میلیونها درجه سانتی گراد رسید، همجوشی هسته ای میان هسته های هیدروژن آغاز می شود. در طی این فرایند هر چهار هسته هیدروژن به هم می پیوندند تا یک هسته هلیوم بسازند و با ناپدید شدن مقداری جرم، مقدار زیادی انرژی آزاد می شود. گرمای تولید شده باعث نیروی انبساط بیرون گرایی می شود که با گرانش درون گرا به تعادل رسیده و ستاره در قسمت اصلی عمر خود در یک تعادل هیدروستاتیکی بسر میبرد.
این تعادل تا زمانی که ذخیره سوخت هیدروژن هسته کافی است، ادامه دارد. در این دوره از عمر ستاره اصطلاحا گفته می شود که ستاره درون رشته اصلی بسر می برد. عمر یک ستاره در رشته اصلی به جرم آن بستگی دارد. هرچه جرم ستارهای بیشتر باشد، گرانش آن بزرگتر و فشار و دما در هسته آن بیشتر است. در نتیجه سرعت واکنش های هسته ای در مرکز آن بیشتر است و ذخیره سوخت هسته خود را زودتر به انتها می رساند. در حالی که عمر ستاره ای به اندازه خورشید حدود 10 میلیارد سال است، ستاره ای با جرم ده برابر خورشید تنها چند میلیون سال عمر خواهد کرد.
سرنوشت یک ستاره پس از به پایان رسیدن ذخیره سوخت هیدروژن هسته آن به جرم اولیه ستاره بستگی دارد. بدین ترتیب ستاره می تواند سه شرنوشت متفاوت پیدا کند.
کوتوله های سفید
ستاره ای که جرمی کمتر از 1.4 برابر خورشید داشته باشد، پس از اتمام سوخت هیدروژن هسته خود برای مقاومت در برابر گرانش بی امان، هلیوم را به عناصر سنگین تر مانند کربن تبدیل خواهد کرد. اما گرمای لازم از این واکنش های هسته ای جدید برای مقاومت در برابر فروریزش گرانشی کافی نیست و هسته ستاره شروع به چروک خوردن می کند. این فرایند دمای هسته را تا صدها میلیون درجه سانتی گراد بالا می برد و در نتیجه لایه های بیرونی ستاره منبسط می شوند. ستاره به غولی سرخ تبدیل می شود که دمای سطحی آن حدود هزار درجه سانتی گراد است و لایه های بیرونی بسیار رقیق دارد. خورشید ما پس از پنج میلیارد سال دیگر به یک غول سرخ تبدیل شده و سیارات تیر و زهره را در خود خواهد بلعید.
پس از میلیونها سال دیگر لایه های بیرونی این غول قرمز سرد شده و تنها یک هسته بسیار چگال بر جای میماند. این جسم چگال بجای مانده به علت سطح کوچک خود سفید رنگ است و کوتوله سفید نامیده میشود. در حالی که اندازه یک کوتوله سفید تقریبا برابر سیاره زمین است، جرم آن می تواند تا 200 هزار برابر جرم زمین باشد. چگالی این جسم به قدری زیاد است که هر سانتی متر مکعب آن چندین تن وزن خواهد داشت.
یک کوتوله سفید تا میلیاردها سال به نورافشانی بسیار رقیق ادامه داده و سپس با سرد شدن بیشتر به یک کوتوله سیاه تبدیل می شود که دیگر قابل رویت با نور معمولی نیست.
ماده درون کوتوله سفید از نوع ماده تبهگن الکترونی است. با فروریزش اتمها لایه های الکترونی شکسته شده و ماده به نوعی سوپ متشکل از هسته های نزدیک به هم در دریایی از الکترونها تبدیل می شود. هیچ همجوشی هسته ای در مرکز کوتوله سفید صورت نگرفته و دمای آن از باقیمانده دمای زمان حیات ستاره ناشی می شود. نزدیکترین کوتوله سفید به ما Sirius B است که حدود 8.6 سال نوری از ما فاصله دارد و همراه با ستاره آبی و بسیار درخشنده Sirius A یک زوج دوتایی را تشکیل می دهند.
تصویر واقعی از زوج دوتایی Sirius A و Sirius B - ستاره بزرگ و درخشان Sirius A است و همراه کوچک آن کوتوله سفید Sirius B است.
ستاره نوترونی
اگر ستاره ای تا حدود هشت برابر خورشید جرم داشته باشد پس از اتمام سوخت هسته ای با توان سهمگین تری فرو خواهد ریخت. در این وضعیت دمای ناشی از فروریزش هسته ستاره آنقدر زیاد است که انفجاری عظیم در لایه های خارجی را موجب می شود و یک ابرنوستاره (سوپر نوا) شکل می گیرد. زمانی که درخشندگی یک ستاره آنقدر زیاد می شود که ستارگان نزدیک به خود را تحت الشعاع قرار می دهد یک انفجار ابرنوستاره ای روی داده است. برخی از این ابرنوستاره ها حتی در وسط روز روشن نیز قابل مشاهده هستند. مقادیر عظیمی از جرم ستاره به صورت حلقه هایی سحابی مانند به اطراف پرتاب می شود و جرمی کمتر از 3.2 برابر جرم خورشید به صورت هسته ای متراکم بر جای می ماند. فروریزش هسته تا جایی انجام می شود که الکترونها با پروتونهای هسته برخورد کرده و به نوترون تبدیل می شوند. بنابراین هسته چنین ستاره متراکمی عمدتا از نوترون ساخته شده است. یک ستاره نوترونی قطری حدود چند ده کیلومتر و چگالی عظیمی در حد چندین میلیون کیلوگرم بر متر مکعب دارد. هر قاشق چایخوری از ماده این ستاره می تواند یک میلیارد تن وزن داشته باشد.
ستارگان نوترونی اغلب در مرکز سحابی های عظیم قرار دارند
ستاره نوترونی به واسطه چگالی عظیم خود بسرعت به دور محور خود می گردد و پرتابه هایی از الکترونها را در هر کسرثانیه از قطب های خود گسیل می کند. بدین ترتیب دارای نوعی ضربان منظم است و اغلب آنها به پولسار (Pulsar) مخفف ستاره ضربان کننده موسوم هستند. این ضربانها در رادیوتلسکوپهای عظیم زمینی قابل آشکارسازی هستند. همچنین محل ستاره های نوترونی را می توان از اثر گرانشی آنان بر ستاره مجاور در یک زوج دوتایی آشکار سازی کرد.
اتمسفر بسیار نازک ستاره نوترونی از هیدروژن، هلیوم و کربن تشکیل شده است. پوسته خارجی آن شامل یونها و الکترونها است و گوشته داخلی آن از یونها و نوتروهایی به شکل یک ابرسیال ساخته شده است. هسته خارجی از پروتونهای ابررسانا ساخته شده و ماهیت هسته داخلی هنوز بر دانشمندان معلوم نیست.
طبق نظریه نسبیت عام اینشتاین که توسط فرمولهای میدان گرانشی او و نیز آزمایشات و تجارب کیهانی متعدد به اثبات رسیده، فضا-زمان در مجاورت ماده خم می شود. چگالی ستاره نوترونی به قدری زیاد است که انحنای زیادی در فضا – زمان را موجب می شود بطوری که پرتوهای نور عبور کننده از کنار آن خم می شوند. به این پدیده لنز گرانشی گفته می شود که آثار بسیار شگفتی دارد و باعث بزرگنمایی ستارگان دور دست واقع در پشت ستاره نوترونی می شود.
پدیده لنز گرانشی باعث می شود تصویر ستارگان پشت سر یک مانع عظیم کیهانی را ببینیم
سیاهچاله ها
اگر ستاره ای در ابتدای پیدایش خود جرمی بیش از 20 برابر خورشید داشته باشد، پایانی بسیار فاجعه بار خواهد داشت. در پایان سوخت هیدروژن هسته، گرانش بی امان جرم عظیم این ستاره فروریزش مهیب هسته آن را موجب می شود اما این بار ماده پس از برخورد الکترونها به پروتونها و تشکیل نوترونهای تبهگن باز به تراکم ادامه می دهد و چگالی هسته به بی نهایت می رسد. خمش فضا زمان در اثر این تراکم بی نهایت ماده به قدری است که مانع فرار حتی نور می شود. به عبارتی حتی پرتوهای نور نمی توانند از میدان گرانشی این جرم جدید که سیاهچاله نام دارد بگریزند. یک سیاهچاله توسط نور یا هرگونه پرتو الکترومغناطیسی دیگر قابل مشاهده نیست. لیکن همچنانکه گرانش با مجذور فاصله کاهش می یابد، فضای مدوری اطراف سیاهچاله وجود دارد که گرانش سیاهچاله در آن فاصله به قدری ضعیف می شود که ماده می تواند از سیاهچاله فرار کند. به این فاصله از سیاهچاله افق رویداد گفته می شود.
تصویر واقعی از یک سیاهچاله و افق رویداد آن
یک سیاهچاله می تواند ماده یک ستاره نزدیک تر به خود را ببلعد و باعث از هم گسیختن آن ستاره شود. ناده در هنگام سقوط به مرکز سیاهچاله به سرعتهایی نزدیک نور دست می یابد و انرژی جنبشی این سقوط به صورت تشعشع پرتو ایکس به اطراف پراکنده می شود. در مرکز هر کهکشان یک ابرسیاهچاله با جرمی حدود میلیونها برابر جرم خورشید وجود دارد که منبعی بسیار قوی از تشعشع ایکس است.
تالیف: اصغر ناصری
تقریبا هر روز ستاره شناسان موفق به کشف سیارات بیگانه جدیدی می شوند اما به علت فاصله باورنکردنی بین دستگاه های ستارهای، اکتشاف فضایی به درون دستگاه خورشیدی خودمان محدود شده است. برای مثال تخمین زده شده که فضاپیمای وویاجر 1 که هم اکنون با سرعت 17.3 کیلومتر بر ثانیه در حال دور شده از ماست، 73 هزار سال بعد به پروکسیمای بی یعنی نزدیکترین سیاره تایید شده بیگانه برسد.
برای حل مساله بغرنج فیزیکی پیمودن فواصل بسیار بزرگ، دانشمندان به سیستم های پیشرانه روی آورده اند که بسیار پیشرفته تر از راکت های با سوخت شیمیایی فعلی هستند. یک چنین سیستم پیشنهاد شده ای پیشرانه بر اساس ضد ماده است که همچنانکه از نام آن پیدا است، استفاده از ضد ماده برای پیش راندن یک فضاپما با سرعت هایی در حد چند صدم سرعت نور است.
ضد ماده چیز جدیدی در فیزیک نیست. وجود آن نخستین بار توسط کارل آندرسن در 1932 ثابت شد. او ذره پوزیترون را کشف کرد که معادل الکترونهایی با بار مثبت هستند. به دنبال آن وجود ضد ماده بارها به اثبات رسید، از جمله در بی واترون برکلی در سال 1955 یک ضد پروتون و در پژوهشگاه فیزیک ذره ای اروپا CERN ضد اتمها کشف شدند.
برخورد یک پروتون و یک ضد پروتون به انفجاری خواهد انجامید که تشعشع خالص با سرعت سیر نور تولید خواهد کرد. برپایه معادله اینشتاین انرژی تولید شده معادل جرم هر دو ذره ضربدر مجذور سرعت نور است و هر دو ذره بطور کامل تباه خواهند شد. به عبارتی یک گرم از ضد ماده قادر است انرژی معادل دوازده مخزن خارجی شاتل فضاپیما تولید کند. بنابراین ضد ماده ها می توانند منبعی ایده آل برای تامین انرژی مسافرت های فضایی باشند.
هم اکنون ظرفیت تولید و ذخیره ضدماده توسط دانشمندان، حدود چند نانوگرم در سال است که برای تامین سوخت کافی یک فضاپیما با نیروی محرکه ضدماده کافی نیست. بنابراین پیشرانهایی مبتنی بر ترکیب ضد ماده و واکنش هسته ای پیشنهاد شده اند که در آنها از ضد ماده تنها برای آغاز واکنش هسته ای استفاده می شود. ضدپروتونها با برخورد با ماده هسته ای متشکل از اورانیوم 238 تباه شده و انرژی کافی برای آغاز واکنش شکافت هسته ای فراهم می کنند. سپس واکنش شکافت هسته ای منجر به تحریک هسته دوتریم-تریتیوم شده و واکنش همجوشی هسته ای در مرکز رآکتور صورت می پذیرد. پلاسمای بسیار داغ تولید شده در اثر این واکنش همجوشی پیشرانه لازم برای فضاپیما را فراهم خواهد ساخت.
پیش بینی می شود یک فضا پیما مبتنی بر پیشران ضدماده بتواند با سرعت 115 میلیون کیلومتر بر ساعت حرکت کند. بنابراین سفر به مریخ توسط این فضاپیما حدود یک ساعت و نیم به طول خواهد انجامید در حالی که هم اکنون این سفر با راکت های سوخت هیدروژنی موجود نه ماه بطول خواهد انجامید. بنابراین استفاده از پیشرانه مبتنی بر ضد ماده امکان کشف فضاهای ناشناخته را برای بشر فراهم خواهد ساخت.
منابع:
https://news.yahoo.com/could-antimatter-based-propulsion-visit-130051552.html
http://www2.ee.ic.ac.uk/derek.low08/yr2proj/antimatter.htm
https://medium.com/techtalkers/antimatter-spacecraft-the-future-of-interstellar-travel-4f06b7491bc3
20 ژانویه 2023
تقریبا 150 کیلومتر دورتر از ساحل یورکشایر، نسل جدیدی از توربین های بادی دور از ساحل که در داگر بنک ساخته می شود، ارتفاعی بیش از برخی آسمان خراشها خواهند داشت.
همراه با انبوهی صفحات خورشیدی و خودروهای برقی، این شاهکارهای مهندسی بشر ستون فقرات یک اقتصاد سبز خواهند بود که همراستا با ترک سوخت های فسیلی ظهور یافته است.
لیکن همچنانکه ما رویکرد توقف انتشار کربن را به نام نجات سیاره مان در پیش گرفته ایم، درباره اقدامات لازم برای نیل به این هدف تنش زیادی بروز کرده است.
بر طبق نظر سازمان جهانی انرژی (IEA) و بانک جهانی، حرکت بسوی منابع انرژی تجدیدپذیر متضمن رشد بی سابقه استخراج کانیهای گرانقیمت از خاک بوده است.
چه لیتیوم و کبالت مورد نیاز برای برای باتری ها باشد و یا عناصر خاکی نادر مورد استفاده در آهنرباهایی که در موتور توربین ها و خودروهای برقی بکار می روند، ما نخواهیم توانست بدون اینها به فناوری های سبز مورد نیاز خود برسیم.
علاوه براین، پژوهشگران و برگزارکنندگان کارزارهای زیست محیطی هشدار می دهند که معادن تولید کننده این کانی ها مشکلات زیست محیطی خاص خود پدید آورده اند، بدترین نمونه این مشکلات ویران شدن چشم اندازها، آلودگی آب و تخریب مزارع است. این صنعت چالش های ژئوپولتیکی برای بریتانیا و متحدان آن بوجود آورده است زیرا چین بر زنجیره تامین کانی های نادر تسلط دارد.
هنری سندرسن نویسنده و روزنامه نگار کسب و کار بر این عقیده است که غلبه بر این تناقضات یکی از بزرگترین چالش های پیش روی کسب . کارها و سیاست گذاران است. به گفته او: "معدن کاوی دارای اثراتی است و برای اغلب جوامع محلی امر مطلوبی نیست." ایجاد موازنه بین نیاز به معادن عناصر نادر و مقاومت جوامع محلی امر ساده ای نیست.
رشد انفجاری معدنکاوی
حجم عظیم کانی ها و فلزات مورد نیاز تحول سبز که متضمت برقی سازی گسترده حمل و نقل و تولید انرژی است، حیرت آور است.
کانی هایی مانند لیتیم، کبالت و نیکل برای باتری های ذخیره کننده انرژی محرک میلیاردها خودروی برقی مورد نیاز هستند. مس برای خطوط انتقال برق همه جا مورد نیاز است. فلزات نادر خاکی برای ساخت آهنرباهایی که نقشی اساسی در بخش های چرخنده توربین های بادی و موتورهای برقی دارند بکار می رود. در حالی که یک خودروی عادی به حدود 34 کیلوگرم کانی نیاز دارد، در یک خودروی برقی حدود 207 کیلوگرم یا شش برابر بیشتر کانی کمیاب بکار می رود. در این میان، یک توربین بادی دور از ساحل 13 برابر بیشتر کانی کمیاب برای تولید هر مگاوات برق نسبت به یک نیروگاه گازی نیاز دارد. موسسه جهانی انرژی چنین پیش بینی کرده است که تقاضا برای کانی های اساسی تا سال 2050 به 42.3 تن یعنی شش برابر میزان کنونی خواهد رسید. این امر منجر به انفجاری در معدن کاوی در سالهای آتی خواهد شد. در سراسر اروپا بویژه در کشوری مانند پرتغال که منابع بزرگ لیتیم موجود است، مقاومت زیادی از سوی جوامع محلی در برابر معدنکاوی بروز کرده است. صدور مجوز برای معدنکاوی در کشورهای اتحادیه اروپا بسادگی صورت نمی پذیرد. اروپا هم اکنون در زمینه دستیابی به کانی های کمیاب کاملا به چین وابسته است. بیش از 90 درصد فلزات کمیاب خاکی توسط چین استخراج و تولید می شود. همچنین بین 50 تا 70 درصد لیتیوم و 45 درصد نیکل جهانی توسط چین به بازار عرضه می شود. به کمک یارانه های سخاوتمندانه دولتی شرکتهای چینی کشورهای دیگر از استرالیا تا شیلی را برای معادن فلزات کمیاب جسته اند. حاصل این معدن کاوی ها میلیون ها تن مواد سمی بوده که در دامان طبیعت رها شده است.
منبع
https://news.yahoo.com/green-revolution-fuelling-environmental-destruction-185418967.html
تلسکوپ فضایی جیمز وب ناسا اولین تصویر مستقیم از یک سیاره خارج از دستگاه خورشیدی را ثبت کرد. این سیاره که HIP 65426 b نامیده میشود یک غول گازی است بنابراین نمیتواند میزبان حیات فرازمینی باشد. سیاره مزبور در فاصله 355 سال نوری از زمین قرار دارد (هر سال نوری تقریبا 10 هزار میلیارد کیلومتر است!) و اولین بار در سال 2017 کشف شده است. این غول پازی 12 بار جسیم تر از برجیس (مشتری) است و در فاصله 15 میلیارد کیلومتری ستاره خود به دور آن می گردد.
به گفته ناسا تلسکوپ جیمز وب می تواند جزئیات دقیق تری از جرم و سن این سیاره فراهم کند. ستاره شناسان عمر این سیاره را 15 تا 20 میلیون سال تخمین می زنند که در مقایسه با سیاره زمین ما با عمر 4.5 میلیارد سال بسیار جوان بنظر می آید.
مشاهده مستقیم سیارات خارجی بسیار دشوار است زیرا در مقایسه با ستاره خود بسیار کم نورتر هستد. فون پیشرفته عکسبرداری مادون قرمز و پردازش تصویر برای حذف نور ستاره اصلی باعث شده دانشمندان بتوانند تصویر مستقیم سیاره را قابل دریافت کنند. جیمز وب با بهره گیری از دوربین ها و فیلترهای پیشرفته خود، قابلیت ستاره شناسان در شناسایی سیارات خارجی را بسیار افزایش داده است.
منبع:
https://news.yahoo.com/nasas-james-webb-telescope-snaps-212539785.html
بهرام یا مریخ (Mars) چهارمین سیاره از خورشید یک دنیای خشک و سنگی است که رنگ قرمز نمادینش برای آن نام سیاره سرخ را به ارمغان آورده است. بهرام در طول تاریخ انسان را به تخیل واداشته است و امروزه بیش از هر جسم دیگری در دستگاه خورشیدی مورد کاوش قرار گرفته و سیاره گردها و مدارگردهای متعددی آن را برای شواهد حیات در گذشته و حال مورد جستجو قرار داده اند.
بهرام با چشم غیرمسلح در آسمان شب زمین قابل مشاهده است. مارس نام خود را از خدای رومی جنگ گرفته زیرا رنگ سرخ آن با جنگ و نزاع مترادف دانسته شده است.
این سیاره سنگی دارای قطر 6794 کیلومتر یعنی تقریبا نصف زمین است. پوسته بهرام 10 تا 50 کیلومتر ضخامت دارد و بیشتر از آهن، منیزیوم، آلومینیوم، کلسیوم و پتاسیوم تشکیل شده است. زیر این پوسته یک جبه سنگی به ضخامت 1240 تا 1880 کیلومتر است که یک هسته چگال ساخته شده از آهن، نیکل و گوگرد با شعاع 1500 تا 2100 کیلومتر را احاطه می کند.
سیاره گرد Preservance از دوربین دوتایی خود برای گرفتن این تصویر از تپه سانتا کروز در فاصله 2.5 کیلومتری خود استفاده کرده است.
سطح سنگی مریخ از گرد و خاک، صخره ها و دره های متعددی پوشیده شده است. یک اتمسفر نازک بهرام را احاطه می کند که فظار آن 1000 برابر کمتر از فشار هوا در سطح دریای زمین است. اتمسفر بهرام از 95 درصد دی اکسید کربن، 3 درصد نیتروژن و مقادر کمی اکسیژن، مونواکسید کربن، بخار آب، متان، سایر گازها و گرد و غبار تشکیل شده است. این غبار به آسانی با وزش باد در سراسر بهرام پراکنده شده و به آسمان آن یک رنگ قهوه ای مایل به زرد می دهد. کاوشگری که توسط امارات متحده عربی ساخته شد در سال 2022 شفق های عظیم و زیبایی پیرامون بهرام کشف کرد که نیمی از سیاره را دور زده بودند.
مکان بهرام در دستگاه خورشیدی اندازه ها مطابق مقیاس واقعی نیست.
بهرام در فاصله تقریبی 228 میلیون کیلومتری به دور خورشید می گردد. روز بهرام 24.6 ساعت زمینی طول می کشد و 669.6 روز طول می کشد تا بهرام یکبار به دور خورشید بگردد. تمایل مداری بهرام نیز بسیار شبیه سیاره ما حدود 25 درجه است، یعنی بهرام فصل هایی مانند زمین را تجربه می کند.
بهرام دو قمر کوچک شبیه سیب زمینی به نامهای فوبوس و دیموس دارد. فوبوس 22.2 کیلومتر و دیموس 12.6 کیلومتر قطر دارد. هردو احتمالا سیارکهایی بوده اند که اسیر میدان گرانشی بهرام شده اند. شکل زیر کاوشگرهایی را نشان می دهد که تاکنون برای بهرام ارسال شده اند.
کاوشهای اخیر ثابت کرده اند که حدود 2 میلیار سال قبل اقیانوسها و رودخانه هایی بر سطح سیاره سرخ وجود داشته اند.
مرتفع ترین کوه در دستگاه خورشیدی در سیاره بهرام (مریخ- مارس) واقع شده است. این کوه المپوس مونز نامیده می شود و ارتفاعی حدود ۲۴ کیلومتر دارد که سه برابر کوه اورست سیاره زمین است. علاوه بر ارتفاع بسیار زیاد این کوه عرصه بسیار وسیعی را اشغال کرده و ۵۵۰ کیلومتر پهنا دارد. شیب این کوه بسیار کم بوده و تنها حدود ۲ تا ۵ درجه است. این کوه یک آتشفشان سرپوشیده است که از خروج گدازه ها تشکیل شده است.
تصویری خیره کننده از آسمان شب بهرام از دید دوربین سیاره گرد پریزروانس - به علت اتمسفر نازک و نبود غبار جوی و نور مزاحم شهرها مانند سیاره زمین، آسمان شب بهرام بسیار پرستاره تر و خیره کننده تر است. قلب کهکشان راه شیری در تصویر دیده می شود.
مجموعه مقالات درباره سیارات دستگاه خورشیدی
- برجیس: شاه سیارات- کیوان: حقایقی درباره سیاره حلقه دار
- نپتون: دورترین سیاره از خورشید