دنیای علم و تکنولوژی

دنیای علم و تکنولوژی

اخبار و مقالات مربوط به دنیای علم و تکنولوژی ترجمه شده از منابع معتبر
دنیای علم و تکنولوژی

دنیای علم و تکنولوژی

اخبار و مقالات مربوط به دنیای علم و تکنولوژی ترجمه شده از منابع معتبر

کوتوله‌های سفید، ستاره‌های نوترونی و سیاهچاله‌ها

فرایند شکل گیری یک ستاره

یک ستاره از ابر چرخانی از غبار و گاز تشکیل می شود. نیروی گرانش بین ذرات این ابر چرخان، کم کم آن را به صورت یک کره متراکم می کند و افزایش فشار باعث بالا رفتن دمای هسته آن می شود. وقتی دمای درونه این پیش ستاره به میلیونها درجه سانتی گراد رسید، همجوشی هسته ای میان هسته های هیدروژن آغاز می شود. در طی این فرایند هر چهار هسته هیدروژن به هم می پیوندند تا یک هسته هلیوم بسازند و با ناپدید شدن مقداری جرم، مقدار زیادی انرژی آزاد می شود. گرمای تولید شده باعث نیروی انبساط بیرون گرایی می شود که با گرانش درون گرا به تعادل رسیده و ستاره در قسمت اصلی عمر خود در یک تعادل هیدروستاتیکی بسر می‌برد.

این تعادل تا زمانی که ذخیره سوخت هیدروژن هسته کافی است، ادامه دارد. در این دوره از عمر ستاره اصطلاحا گفته می شود که ستاره درون رشته اصلی بسر می برد. عمر یک ستاره در رشته اصلی به جرم آن بستگی دارد. هرچه جرم ستاره‌ای بیشتر باشد، گرانش آن بزرگتر و فشار و دما در هسته آن بیشتر است. در نتیجه سرعت واکنش های هسته ای در مرکز آن بیشتر است و ذخیره سوخت هسته خود را زودتر به انتها می رساند. در حالی که عمر ستاره ای به اندازه خورشید حدود 10 میلیارد سال است، ستاره ای با جرم ده برابر خورشید تنها چند میلیون سال عمر خواهد کرد.

سرنوشت یک ستاره پس از به پایان رسیدن ذخیره سوخت هیدروژن هسته آن به جرم اولیه ستاره بستگی دارد. بدین ترتیب ستاره می تواند سه شرنوشت متفاوت پیدا کند.

کوتوله های سفید

ستاره ای که جرمی کمتر از 1.4 برابر خورشید داشته باشد، پس از اتمام سوخت هیدروژن هسته خود برای مقاومت در برابر گرانش بی امان، هلیوم را به عناصر سنگین تر مانند کربن تبدیل خواهد کرد. اما گرمای لازم از این واکنش های هسته ای جدید برای مقاومت در برابر فروریزش گرانشی کافی نیست و هسته ستاره شروع به چروک خوردن می کند. این فرایند دمای هسته را تا صدها میلیون درجه سانتی گراد بالا می برد و در نتیجه لایه های بیرونی ستاره منبسط می شوند. ستاره به غولی سرخ تبدیل می شود که دمای سطحی آن حدود هزار درجه سانتی گراد است و لایه های بیرونی بسیار رقیق دارد. خورشید ما پس از پنج میلیارد سال دیگر به یک غول سرخ تبدیل شده و سیارات تیر و زهره را در خود خواهد بلعید.

پس از میلیونها سال دیگر لایه های بیرونی این غول قرمز سرد شده و تنها یک هسته بسیار چگال بر جای می‌ماند. این جسم چگال بجای مانده به علت سطح کوچک خود سفید رنگ است و کوتوله سفید نامیده می‌شود. در حالی که اندازه یک کوتوله سفید تقریبا برابر سیاره زمین است، جرم آن می تواند تا 200 هزار برابر جرم زمین باشد. چگالی این جسم به قدری زیاد است که هر سانتی متر مکعب آن چندین تن وزن خواهد داشت.

یک کوتوله سفید تا میلیاردها سال به نورافشانی بسیار رقیق ادامه داده و سپس با سرد شدن بیشتر به یک کوتوله سیاه تبدیل می شود که دیگر قابل رویت با نور معمولی نیست.

ماده درون کوتوله سفید از نوع ماده تبهگن الکترونی است. با فروریزش اتمها لایه های الکترونی شکسته شده و ماده به نوعی سوپ متشکل از هسته های نزدیک به هم در دریایی از الکترونها تبدیل می شود. هیچ همجوشی هسته ای در مرکز کوتوله سفید صورت نگرفته و دمای آن از باقیمانده دمای زمان حیات ستاره ناشی می شود. نزدیکترین کوتوله سفید به ما Sirius B است که حدود 8.6 سال نوری از ما فاصله دارد و همراه با ستاره آبی و بسیار درخشنده Sirius A یک زوج دوتایی را تشکیل می دهند.


تصویر واقعی از زوج دوتایی Sirius A و Sirius B - ستاره بزرگ و درخشان Sirius A است و همراه کوچک آن کوتوله سفید Sirius B است.


ستاره نوترونی

اگر ستاره ای تا حدود هشت برابر خورشید جرم داشته باشد پس از اتمام سوخت هسته ای با توان سهمگین تری فرو خواهد ریخت. در این وضعیت دمای ناشی از فروریزش هسته ستاره آنقدر زیاد است که انفجاری عظیم در لایه های خارجی را موجب می شود و یک ابرنوستاره (سوپر نوا) شکل می گیرد. زمانی که درخشندگی یک ستاره آنقدر زیاد می شود که ستارگان نزدیک به خود را تحت الشعاع قرار می دهد یک انفجار ابرنوستاره ای روی داده است. برخی از این ابرنوستاره ها حتی در وسط روز روشن نیز قابل مشاهده هستند. مقادیر عظیمی از جرم ستاره به صورت حلقه هایی سحابی مانند به اطراف پرتاب می شود و جرمی کمتر از 3.2 برابر جرم خورشید به صورت هسته ای متراکم بر جای می ماند. فروریزش هسته تا جایی انجام می شود که الکترونها با پروتونهای هسته برخورد کرده و به نوترون تبدیل می شوند. بنابراین هسته چنین ستاره متراکمی عمدتا از نوترون ساخته شده است. یک ستاره نوترونی قطری حدود چند ده کیلومتر و چگالی عظیمی در حد چندین میلیون کیلوگرم بر متر مکعب دارد. هر قاشق چایخوری از ماده این ستاره می تواند یک میلیارد تن وزن داشته باشد.

ستارگان نوترونی اغلب در مرکز سحابی های عظیم قرار دارند

ستاره نوترونی به واسطه چگالی عظیم خود بسرعت به دور محور خود می گردد و پرتابه هایی از الکترونها را در هر کسرثانیه از قطب های خود گسیل می کند. بدین ترتیب دارای نوعی ضربان منظم است و اغلب آنها به پولسار (Pulsar) مخفف ستاره ضربان کننده موسوم هستند. این ضربانها در رادیوتلسکوپهای عظیم زمینی قابل آشکارسازی هستند. همچنین محل ستاره های نوترونی را می توان از اثر گرانشی آنان بر ستاره مجاور در یک زوج دوتایی آشکار سازی کرد.

اتمسفر بسیار نازک ستاره نوترونی از هیدروژن، هلیوم و کربن تشکیل شده است. پوسته خارجی آن شامل یونها و الکترونها است و گوشته داخلی آن از یونها و نوتروهایی به شکل یک ابرسیال ساخته شده است. هسته خارجی از پروتونهای ابررسانا ساخته شده و ماهیت هسته داخلی هنوز بر دانشمندان معلوم نیست.

طبق نظریه نسبیت عام اینشتاین که توسط فرمولهای میدان گرانشی او و نیز آزمایشات و تجارب کیهانی متعدد به اثبات رسیده، فضا-زمان در مجاورت ماده خم می شود. چگالی ستاره نوترونی به قدری زیاد است که انحنای زیادی در فضا زمان را موجب می شود بطوری که پرتوهای نور عبور کننده از کنار آن خم می شوند. به این پدیده لنز گرانشی گفته می شود که آثار بسیار شگفتی دارد و باعث بزرگنمایی ستارگان دور دست واقع در پشت ستاره نوترونی می شود.

پدیده لنز گرانشی باعث می شود تصویر ستارگان پشت سر یک مانع عظیم کیهانی را ببینیم

سیاهچاله ها

اگر ستاره ای در ابتدای پیدایش خود جرمی بیش از 20 برابر خورشید داشته باشد، پایانی بسیار فاجعه بار خواهد داشت. در پایان سوخت هیدروژن هسته، گرانش بی امان جرم عظیم این ستاره فروریزش مهیب هسته آن را موجب می شود اما این بار ماده پس از برخورد الکترونها به پروتونها و تشکیل نوترونهای تبهگن باز به تراکم ادامه  می دهد و چگالی هسته به بی نهایت می رسد. خمش فضا زمان در اثر این تراکم بی نهایت ماده به قدری است که مانع فرار حتی نور می شود. به عبارتی حتی پرتوهای نور نمی توانند از میدان گرانشی این جرم جدید که سیاهچاله نام دارد بگریزند. یک سیاهچاله توسط نور یا هرگونه پرتو الکترومغناطیسی دیگر قابل مشاهده نیست. لیکن همچنانکه گرانش با مجذور فاصله کاهش می یابد، فضای مدوری اطراف سیاهچاله وجود دارد که گرانش سیاهچاله در آن فاصله به قدری ضعیف می شود که ماده می تواند از سیاهچاله فرار کند. به این فاصله از سیاهچاله افق رویداد گفته می شود.

تصویر واقعی از یک سیاهچاله و افق رویداد  آن

یک سیاهچاله می تواند ماده یک ستاره نزدیک تر به خود را ببلعد و باعث از هم گسیختن آن ستاره شود. ناده در هنگام سقوط به مرکز سیاهچاله به سرعتهایی نزدیک نور دست می یابد و انرژی جنبشی این سقوط به صورت تشعشع پرتو ایکس به اطراف پراکنده می شود. در مرکز هر کهکشان یک ابرسیاهچاله با جرمی حدود میلیونها برابر جرم خورشید وجود دارد که منبعی بسیار قوی از تشعشع ایکس است.


تالیف: اصغر ناصری