دنیای علم و تکنولوژی

دنیای علم و تکنولوژی

اخبار و مقالات مربوط به دنیای علم و تکنولوژی ترجمه شده از منابع معتبر
دنیای علم و تکنولوژی

دنیای علم و تکنولوژی

اخبار و مقالات مربوط به دنیای علم و تکنولوژی ترجمه شده از منابع معتبر

مدل استاندارد فیزیک ذره ای


مدل استاندارد فیزیک ذره ای درک فیزیک نوین از سه نیروی بنیادی طبیعت از نیروهای چهاگانه است: الکترومغناطیس، نیروی هسته ای قوی و نیروی هسته ای ضعیف.

مدل استاندارد کاملترین توصیف از دنیای زیراتمی توسط فیزیک نوین است. این مدل در طی قرن بیستم بر بنیاد مکانیک کوانتومی، بنا شد، نظریه عجیبی که رفتار ذرات در کوچکترین مقیاس ها را توصیف می‌کند. مدل استاندارد تشریح کننده سه نیروی بنیادی طبیعت یعنی الکترومغناطیس، نیروی هسته‌ای قوی و نیروی هسته‌ای ضعیف است. این نظریه هزاران بار با دقت فوق تصوری مورد آزمون قرار گرفته و با وجود کاستی هایش، یکی از مهمترین دستاوردهای علوم نوین بشمار می آید.

مدل استاندارد چگونه توسعه یافت؟

توسعه مدل استاندارد در دهه 1950 توسط فیزیکدانان، پس از یک سری اکتشافات نظری و تجربی بنیادین آغاز گردید. در سمت نظری، فیزیکدانان مکانیک کوانتومی را که در ابتدا تنها برای درک ذرات زیراتمی بود برای توضیح نیروی الکترومغناطیسی بسط دادند. در سمت تجربی قضیه، بمب اتمی تازه ابداع شده و فیزیکدانان از نیروهای هسته ای ضعیف و قوی آگاه بودند ولی توصیف کاملی از آنها نداشتند.

مدل استاندارد در دهه 1970 به شکل نوین خود متبلور شد. این کار پس از آن صورت گرفت که عناصر اصلی این مدل در جای خود قرار گرفتند: یک نظریه کوانتومی برای توصیف نیروی هسته ای قوی، امکان متحد ساختن نیروی الکترومغناطیسی و نیروی هسته ای ضعیف و کشف مکانیزم هیگز که جرم ذرات از آن ناشی می شد.

مدل استاندارد دنیای زیراتمی را به دو مقوله گسترده ذرات به نام فرمیون ها و بوزون ها سازماندهی می کند. به بیان ساده، فرمیون ها نمی توانند حالت کوانتومی یکسانی را بطور مشترک دارا باشند (به عبارتی، سطح انرژی یکسانی درئن اتم). فرمیون ها "آجرهای ساختمانی" ماده معمولی هستند که به شکل های مختلفی با هم ترکیب شده و ذرات زیراتمی شناخته شده ای مانند پروتون ها، الکترون ها و نوترون ها را می سازند.

دو نوع فرمیون وجود دارد: لپتون ها که به نیروهای الکترومغناطیسی و هسته ای ضعیف پاسخ می دهند و کوارک ها که به نیروی هسته ای قو یپاسخ می دهند. لپتون ها شامل ذره آشنای الکترون و نیز پسرعموهای سنگین تر آن میوئون و تاو هستند. این دو ذره دقیقا همان خواص الکترون را داشته منتها سنگین تر هستند.

هر کدام از این لپتون ها دارای نوترینوی متناظر به خود هستند. نوترینوها ذرات بسیار سبکی هستند که ندرتا با ماده واکنش می کنند اما در واکنش های هسته ای تولید می شوند. بنابراین نوترینوهای الکترونی، نوترینوهای میوئونی و نوترینوهای تاو داریم.

علوه بر این شش لپتون، کوارک ها نیز در شش نوع یا "طعم" مختلف هستند: کوارک بالا، پایین، افسون، شگفت، فوقانی و تحتانی. کوارک های بالا و پایین سبکترین و پایدارترین آنها هستند و در گروه های سه تایی به هم می‌پیوندند تا پروتونها و نوترونها را بسازند.

در سوی دیگر  بوزونها م یتوانند حالت انرژی یکسانی را مشترک شوند. آشناترین آنها فوتون، ذره حامل نیروی الکترومغناطیسی است. سایر بوزونهای حامل نیرو مشتمل بر سه حامل نیروی هسته  ای ضعیف (به نامهای بوزون W+، W- و Z) و هشت حامل نیروی هسته ای قوی به نام گلوئون ها هستند.

آخرین ذره بوزون به نام بوزون هیگز بسیار خاص است و نقش بسیار مهمی در مدل استاندارد ایفا می کند.

نقش مکانیزم هیگز در مدل استاندارد چیست؟

بوزون هیگز دو وظیفه مهم در مدل استاندارد به  عهده دارد. در انرژی های بالا نیروهای الکترومغناطیس و هسته ای ضعیف با هم به شکل نیرویی به نام الکترو-ضعیف (electroweak) ادغام می شوند. در انرژی های پایین (انرژی های مرسوم زندگی روزمره) این دو نیرو به شکل آشنای خود تفکیک می گردند. بوزون هیگز مسئول جدا نگاه داشتن این دو نیرو در انرژی های پایین است بطوری که نیروی هستهای ضعیف و الکترومغناطیس واکنش متفاوتی با بوزون هیگز دارند.

تمام کوارک ها و لپتونهای دیگر (به استثنای نوترینوها) نیز با بوزون هیگز واکنش می کنند. این واکنش بسته به شدت آن، به ذرات نامبرده جرم منفرد آنها را می دهد. بنابراین حضور بوزون هیگز به بسیاری از ذرات عالم امکان می دهد دارای جرم شوند.

مدل استاندارد چگونه مورد آزمون قرار گرفته است؟

آزمایش مدل استاندارد بسیار دشواراست زیرا تمامی ذرات در این مدل بسیار ریز هستند. هیچکدام از این ذرات، به استثنای شاید الکترونها، قابل مشاهده نیستند لیکن وجود آنها بطور غیرقابل مناقشه ای اثبات شده است.

مدل استاندارد از بوته آزمونهای ابر-دقیق بسیاری در طول چندین دهه پیروز بیرون آمده است. تقریبا تمامی این آزمونها شامل بکارگیری برخورد دهنده های ذرات مانند برخورد دهنده بزرگ هادرون در نزدیکی ژنو بوده اند که ذرات را با سرعت نزدیک به نور با هم برخورد می دهد. این برخوردها مقادیر عظیمی انرژی آزاد کرده و به فیزیکدانان امکان می دهند واکنش های بنیادین طبیعت را مطالعه کنند. سازمان CERN یا مرکز پژوهش های هسته ای اروپا دارنده و بهره بردار از این برخورد دهنده عظیم است. برای مثال این برخورد دهنده امکان می دهد گشتاور مغناطیسی الکترون را با دقت 13 تا 14 رقم اعشار تعیین کنند که براستی دقت حیرت آوری است.

بخشی از تونل 17 کیلومتری شتابدهنده LHC در مرکز CERN

مشکلات موجود در مدل استاندارد ذره ای

با وجود موفقیت عظیم این نظریه در توضیح گستره وسیعی از پدیده های طبیعی تحت یک چارچوب ریاضی واحد، فیزیکدانان به نواقص آن آگاه هستند. مهمتر از همه اینکه تمام تلاشها برای داخل کردن نیروی گرانش در این مدل با شکست مواجه شده است. معلوم نیست حل این مشکل چقدر به طول بیانجامد و آن را یم توان یکی از بزرگترین چالش های فرا روی علم دانست.

همچنین این مدل مکانیزمی برای جرم دادن به نوترینوها ارائه نمی کند و ماده تاریک یا انرژی تاریک را که اشکال مسلط ماده و انرژی در عالم هستند به حساب نمی آورد.

با این وجود مدل استاندارد ذره ای کماکان مهمترین مدل موجود برای توصیف دنیای زیراتمی است.

منبع: LiveScience

BIBLIOGRAPHY

Hoddeson, L. et al. "The Rise of the Standard Model: A History of Particle Physics from 1964 to 1979" (Cambridge University Press 1997)

Cottingham, W.N. and Greenwood, D. A. "An Introduction to the Standard Model of Particle Physics" (Cambridge University Press 2007)

Oerter, R. "The Theory of Almost Everything: The Standard Model, the Unsung Triumph of Modern Physics" (Pi Press 2006)

Bardin, D. and Passarino, G. "The Standard Model in the Making: Precision Study of the Electroweak Interactions" (Clarendon Press 1999)

 

 


Advertisement


دستیار تحقیق در پروژه های علمی و دانشگاهی

با بیش از 25 سال سابقه انجام پروژه های علمی و دانشگاهی

قیمت های توافقی

شماره تماس: 09360771981


 

 

ستارگان نوترونی

ستارگان نوترونی از عجیب ترین اجرام آسمانی هستند. سن، دما و حتی اندازه آنها بدرستی بر دانشمندان معلوم نیست.

هم اکنون اکتشاف گر ترکیب داخلی ستارگان نوترونی که بر عرشه ایستگاه فضایی بین المللی نصب شده ستاره شناسان را قادر ساخته است بسوی اندازه گیری اندازه واقعی ستارگان نوترونی گامهای مطمئن تری برداشته و درباره ساختار درونی عجیب آنها بینش دقیق تری بدست آورند.

سمت چپ این تصویر شکل گیری یک ستاره نوترونی را در چرخه عمر یک ستاره نشان می دهد. یک ستاره آبی رنگ بزرگ و جسیم پس از به پایان رساندن ذخیره سوخت هیدروژن هسته خود، دیگر نمی تواند در برابر فشار گرانشی مقاومت کند. در نتیجه هسته آن متراکم شده و دمای عظیم ناشی از تراکم لایه های بیرونی را منبسط می کند. در نتیجه به یک ابرغول قرمز تبدیل می شود. فروریزش ناگهانی هسته از نقطه ای به بعد باعث انفجار ستاره به شکل یک سوپرنوا می شود. آنچه در مرکز ستاره باقی می ماند یک جرم بسیار فشرده با چگالی میلیاردها گرم بر سانتی متر مکعب است که عمدتا از نوترون ساخته شده است. 

ماده در غایی ترین شکل خود

ستارگان نوتورونی در اثر فروریزش داخلی ستارگان جسیم ایجاد می شوند و در این راه لایه های بیرونی خود را در یک انفجار ابرنوستاره ای به بیرون پرتاب می کنند. ستارگانی که حدود 8 برابر خورشید جرم دارند پس از به اتمام رساندن سوخت هیدروژن هسته خود، شروع به تبدیل هلیوم به عناصر سنگین تر مانند کربن و سپس آهن می کنند. ولی انرژی گرمایی حاصل از این همجوشی آنقدر کافی نیست که در برابر گرانش جرم عظیم ستاره مقاومت کند. در نتیجه فشار گرانشی ستاره، الکترونها و پروتونها را به هم می فشارد تا به نوترون تبدیل شوند. از آنجایی که بیشتر درون اتم فضای خالی است، ماده می تواند تا اندازه غیر قابل باوری متراکم شده به ماده ابرچگال تبدیل شود. یک قاشق چای خوری از ماده ابرچگال سازنده ستاره نوترونی 4 میلیارد تن وزن دارد! این در حالی است که ستاره عظیمی که چندین برابر خورشید قطر دارد پس از تبدیل به ستاره نوترونی قطری در حدود تنها 20 کیلومتر خواهد داشت.

اما ستاره نوترونی در بالاترین حد خود از 95 درصد نوترون تشکیل شده است. پوسته کریستالی آنها شامل الکترونها و یونهای تقریبا معمولی است. همچنانکه فشار گرانشی با عمق افزایش می یابد، پروتونها و الکترونها به هم فشرده شده و تنها نوترونها بر جای می مانند. در اینجا چگالی دو برابر هسته اتم معمولی است. در اعماق ستاره نوترونی و در هسته آن، نوترونها چنان فشرده می شوند که کوآرک های سازنده آنها آزاد می شود. برخلاف تصور، فیزیک هسته ای تنها می تواند بطور تقریبی جرم و شعاع ستارگان نوترونی را محاسبه کند.

نوترونها، کوآرک ها یا هایپرون ها؟

بدست آوردن جرم یک ستاره نوترونی آسان است بویژه اگر ستاره همراهی داشته باشد که به دور گرانیگاه مشترکی بگردند. اما تعیین اندازه آن بسیار دشوارتر است. گرانش ستارگان نوترونی آنقدر عظیم است که مسیر نور ساطع شده از آن را خم می کند. این اعوجاج گرانشی باعث می شود ستاره نوترونی بزرگتر از آنچه هست به نظر رسد.

خمیده شدن پرتوهای نور ارسالی از ستاره نوترونی تحت اثر گرانش عظیم آن باعث می شود بزرگتر از آنچه هست به نظر رسد.

اندازه گیری دقیق تر جرم و اندازه دو ستاره نوترونی شناخته شده نشان می دهد که میدان مغناطیسی ستارگان نوترونی حالتی براستی غریب دارد. به جای شکل دوقطبی معمول، یک ستاره نوترونی میدان مغناطیسی آشوبناکی دارد که دو قطب آن در یک نیمکره واقع شده اند.

میدان مغناطیسی آشوبناک یک ستاره نوترونی

دانشمندان هنوز درباره اجزای سازنده هسته ستارگان نوترونی تردید دارند. حقایق کشف شده سنایوهای مختلفی را پیش پای آنها قرار داده اند از جمله اینکه هسته یک ستاره نوترونی آمیزه ای از نوترون ها و کوارک هاست. همچنین ممکن است از ذره های جسیم تری به نام هایپرون ساخته شده باشد. ذرات مختلفی به عنوان هایپرون پیشنهاد شده اند که یکی از آنها کوارک های شگفت (strange quarks) است. نوترونها و پروتون ها از کوارک های بالا و پایین ساخته شده اند. هایپرون ها خواصی شگفت در مقایسه با پروتون ها و نوترون ها دارند. این ذرات فقط در شتاب دهنده های ذره ظاهر شده اند و بسرعت دچار واپاشی می شوند. اما در هسته ستارگان نوترونی می توانند دارای پایداری کافی بوده و برای مدت معینی در کنار هم باقی بمانند.



تدریس دروس ریاضیات دبیرستان و دانشگاه

توسط مدرس خصوصی مجرب - کارشناس مکانیک جامدات از دانشگاه تهران
با بیش از 23 سال سابقه تدریس خصوصی ریاضیات
09360771981