قلع و تبدیلات آلوتروپی آن
فلزاتی که بیش از یک ساختار کریستالی دارند به آلوتروپ های یکدیگر موسومند و نام این پدیده چندشکلی است. قلع یکی از فلزات معمولی است که تغییرات آلوتروپیک آن بسیار جالب توجه است. قلع سفید (یا قلع بتا) دارای یک ساختارکریستالی مرکزپر چهاروجهی (BCC) در دمای معمولی اتاق است ولی در دمای 13.2 درجه سلسیوس به قلع خاکستری یا آلفا تبدیل می شود که ساختار کریستالی شبیه الماس دارد (ساختار مکعبی الماس گونه) این تبدیل ساختار را می توان به شکل زیر نشان داد:
آهنگ این تحول بسیار آهسته است و هرچه دما ایین تر باشد بر سرعت آن افزوده می شود. همراه با تبدیل قلع سفید به خاکستری تغییر حجمی حدود 27 درصد روی می دهد و در نتیجه چگالی قلع از 7.30 به 5.77 گرم بر سانتی متر مکعب کاهش می یابد. در نتیجهٰ این افزایش حجم به از هم گسیختگی قلع سفید و تبدیل آن به پودری دانه درشت از آلوتروپ خاکستری قلع منجر می شود. در دمای عادی محیط نباید نگران این پدیده بود زیرا سرعت این رویداد بسیار آهسته است.
این تبدیل از قلع سفید به خاکستری نتایج بسیار ناخوشایندی در سال 1850 در روسیه ببار آورد. زمستان آن سال بسیار سرد بود و مدتی طولانی دماهای بسیار پایینی ثبت شد. لباس متحداشکل سربازان روسی دارای تکمه هایی از جنس قلع بود و به علت سرمای زیاد بسیاری از آنها خرد می شد. این اتفاق در مورد بسیاری از لوله های ساز ارغنوان کلیساها نیز افتاد. از این مشکل به عنوان بیماری قلع یاد می شد.
شکل زیر یک نمونه از قلع سفید (چپ) و نمونه معادلی که برای مدتی طولانی تحت دمای 13.2 درجه سلسیوس قرار گرفته را نشان می دهد.
منبع:
MATERIALS SCIENCE and ENGINEERING, An Introduction, William D. Callister, Jr., David G. Rethwisch
آلیاژهای آلومینیوم مورد استفاده در صنایع هوایی
آلیاژهای آلومینیوم در اواخر دهه 1920 جایگزین چوب در بدنه هواپیماها شدند و از آن زمان تاکنون یکی از مصالح اصلی بکار رفته در این صنعت بوده اند. هم اکنون آلیاژهای آلومینیوم با استحکام بالا از مصالح اصلی بدنه هواپیماها بشمار می روند لیکن بتدریج مواد ترکیبی جای آنها را خواهند گرفت.
جذابیت آلومینیوم در قیمت نسبتا پایین و سبکی آن است، فلزی که می تواند تا سطوح استحکام بالایی تحت عملیات حرارتی قرار گیرد. از جمله معایب آلومینیوم نیز ماژول الاستیسیته پایین آن و در مورد آلیاژهای با استحکام بالا، استعداد خوردگی است.
از زمان ابداع آلیاژهای آلومینیوم در دهه 1920 ارتقای قابل توجهی در آلیاژهای آلومینیوم ایجاد شده است. این بهبودها نتیجه ای از درک ترکیب شیمیایی، کنترل ناخالصی ها و اثرات فرآوری و عملیات حرارتی بوده است. هم اکنون تحقیق بر روی نسل سوم آلیاژهای آلومینیوم- لیتیوم ادامه دارد. شکل 1. توسعه آلیاژهای آلومینیوم در طول زمان را نشان می دهد. چنانچه دیده می شود مقاومت تسلیم این آلیاژها در طول 80 سال تقریبا دوبرابر شده است.
تصویر 1
یکی از اولین آلیاژهای آلومینیومی بکار رفته در صنایع هوا-فضا دورآلومین (Duralumin) با نام فنی AA2017 با مقاومت تسلیم 280 مگاپاسکال بوده است. در جنگ جهانی دوم بمب افکن B-29 اولین هواپیمایی بود که از این آلیاژ سود می برد و استحکام و سبکی این آلیاژ منجر به هواپیمایی بزرگ با برد و سرعتی استثنایی شده بود. سخت شوندگی سریع در چند مرحله (tempering) به افزایش استحکام این آلیاژها کمک فراوانی کرد. در دهه 1970 آلیاژی به نام AA7050 ابداع شد که امکان تولید مقاطع ضخیم تر با مقاومت کافی در برابر ترک خوردگی در اثر تنش ناشی از خوردگی را می داد. تصویر شماره 2 انواع اصلی آلیاژهای آلومینیوم را نشان می دهد.
تصویر 2
در سالهای اخیر روند شتابانی بسوی استفاده از مواد کمپوزیت در ساخت هواپیما آغاز شده است. گفته می شود در ساخت بوئینگ 787 بیش از 50 درصد از مواد مرکب استفاده شده است. مواد کمپوزیت دارای معایبی از جمله از دست دادن استحکام در دمای بالای 350 درجه سانتی گراد هستند.
منبعی برای مطالعه بیشتر:
Aluminium Alloys for Aerospace Applications
P. Rambabu, N. Eswara Prasad, V.V. Kutumbarao and R.J.H. Wanhill
برای سالهای پرشماری کمربند ایمنی تنها شکل محافظت غیرفعال در خودروها بود. با وجود نگرانی هایی که در مورد امنیت این وسیله بویژه برای کودکان وجود دارد، آمارها نشان می دهند که استفاده از کمربند ایمنی باعث نجات جان هزاران نفر شده است.
ایربگ یک بالشتک نرم است که در هنگام تصادف باز شده و سپر حفاظتی سرنشین می شود. در دهه 1980 اولین ایربگ های تجاری در خودروها ظاهر شدند. از سال 1998 بدین سو تمامی خودروهای فروخه شده در ایالات متحده باید به ایربگ در سمت راننده و مسافر مجهز می بودند. امروزه آمارها نشان می دهند که استفاده از ایربگ خطر کشته شدن در تصادفات روبرو را تا سی درصد کاهش داده اند. حالا در صندلی و دربهای خودروها نیز ایربگ بکار رفته است. هم اکنون نیز در مورد ایربگ ها تحقیقات زیادی در صنعت و موسسات دولتی انجام میشود.
عمل ایربگ در آزمون برخورد روبروی خودرو
عمل اصلی یک ایربگ این است که سرعت سرنشین را با وارد ساختن کمترین صدمه به صفر کاهش دهند. ایربگ ها باید در فضای محدود میان فرمان یا داشبورد و سرنشین خودرو در کسری از ثانیه عمل کنند. هر ایربگ از سه قسمت اصلی ساخته شده است:
سیستم ایربگ ماده جامدی را مشتعل می سازد که با سرعت بی نهایت زیادی سوخته و حجم زیادی گاز تولید می کند. سپس کیسه هوا با سرعت زیادی متورم شده و با سرعتی حدود 322 کیلومتر بر ساعت از مکان ذخیره خود بیرون می آید. لحظه ای بعد، گاز سریعا از طریق روزنههای کوچک موجود در کیسه بیرون رفته و باعث تخلیه کیسه هوا می شود تا بتوانید حرکت کنید.
سیستم فعال سازی ایربگ
گرچه این فرایند در یک بیست و پنجم ثانیه رخ می دهد، این زمان برای پیشگیری از جراحت جدی کافی است. ماده پودری که از کیسه هوا رها می شود نشاسته ذرت معمولی یا پودر تالکوم است که برای روانکاری کیسه ها در زمان ذخیره آن بکار می رود.
با وجود مفید بودن ایربگ ها در تصادفات شدید، هنوز کمربند ایمنی مهمترین سازوکار ایمنی در برخوردهای کم شدت یا از پهلو و پشت سر است. برخورد ایربگ در تصادف می تواند منجر به صدمات شدید به سرنشین شود و برای پیشگیری از این صذمات، حداقل فاصله فرد از محل ذخیره ایربگ باید 25 سانتی متر باشد. کودکان زیر 12 سال نیز هرگز نباید در صندلی کنار راننده جای داده شوند.
منبع:
https://auto.howstuffworks.com/car-driving-safety/safety-regulatory-devices/airbag.htm/printable
فومهای هوشمند یا ویسکوالاستیک
فومهای ویسکوالاستیک (لزج-کشسان) که به عنوان فومهای هوشمند یا حافظه دار نیز معروفند، برای اولین بار در طی سالهای میانی دهه 60 میلادی در نتیجه پژوهش های انجام گرفته در برنامه انتقال تکنولوژی ناسا بطور تجاری عرضه شدند.
این فومهای پلی اورتانی انعطاف پذیر دارای خاصیتی هستند که به آنها اجازه می دهد نیروی شتاب ثقل عظیم زمان پرتاب موشک یا ورود دوباره فضاپیما به داخل جو زمین را بازتوزیع کرده و از اثر آن بر بدن فضانوردان بکاهند. همچنین در پروازهای طولانی هواپیماهای مسافربری، آسایش بیشتری برای فضانوردان فراهم می سازد.
مشخصه های اصلی
فومهای ویسکوالاستیک پس از فشرده شدن به آهستگی شکل اولیه خود را باز می یابند. وقتی یک شی سنگین (مانند بدن انسان) روی فوم ویسکوالاستیک قرار گیرد، فوم به تدریج شکل آن شی را بخود می گیرد و پس از حذف آن وزن، به آرامی شکل اولیه خود را باز می یابد.
خاصیت دیگر این نوع فوم توانایی آن در میراساختن ارتعاشات و جذب شوک است. این نوع فوم خاصیت فنری فومهای معمولی را نداشته و بیشتر انرژی برخورد را جذب می کند. علاوه بر این خاصیت کلیدی، برخی انواع این فومها به دمای بدن و دمای محیط واکنش نشان می دهند و با حرارت نرم شده و آسانتر با شکل بدن تطبیق می یابند.
مزایا و کاربردها
فوم ویسکوالاستیک کاربردهای زیادی در پزشکی یافته است. قابلیت تطابق آن با شکل بدن و توزیع یکنواخت فشار و وزن، آسایش زیادی برای بیماران فراهم ساخته مانع ایجاد زخم بستر می شود. فومهای معمولی با واردساختن فشار بیش از حد بر بدن بیمار باعث توقف جریان خون در بدن وی شده بافت پوستی او را تخریب می کنند. کاربرد مهم دیگر این نوع فوم در صندلی خودرو است. این فومها علاوه بر آسایش، حفاظت خوبی از سرنشین به عمل می آورند.
فورمولاسیون فومهای ویسکوالاستیک
فومهای ویسکوالاستیک اغلب از تولوئن دی ایزوسیانات (Toluene Diisocyanate) و ترکیبات مشابه آن ساخته می شوند. نام تجاری برخی از این مواد عبارت است از TDI 65، MDI و TDI 80. برای درک خواص استثنایی این نوع فومها باید اثراتی را که مسئول رفتار لزج-کشسان فوم هستند دریابیم. پلی اورتانها پلیمرهایی با یک ساختار شبکه ای سه بعدی هستند که با پلیمریزاسیون افزایشی مواد خامی به نام پلی یول و پلی ایزوسیانات بوجود می آیند. وقتی چنین شبکه ای تحت فشار و تراکم قرار می گیرد یک نیروی بازگرداننده تولید خواهد کرد. برای اینکه پس از تغییرشکل، فوم به آرامی شکل اولیه خود را بازیابد باید این نیروی ارتجاعی به حداقل خود برسد.
دلیل اصلی خاصیل لزج-کشسان این نوع فوم، پدیده ای به نام دمای انتقال شیشه است که معمولا اندکی کمتر از دمای اتاق میباشد. دمای بالاتر از محیط رفتار لزج-کشسان را کاهش داده و باعث می شود فوم نرم شود. از سوی دیگر، دمای پایین تر از محیط باعث تشدید رفتار لزج-کشسان میگردد. دمای انتقال شیشه فوم اتری معمولی بسیار پایین تر از دمای محیط است (بین منفی 50 تا منفی 40 درجه سلسیوس). در حالی که فوم ویسکوالاستیک دمای انتقال شیشه در حدود دمای محیط دارد و افزایش دما در نتیجه تکیه دادن یا فشار بر آن باعث نرم شدن فوم می شود. پس از برداشته شدن فشار و رسیدن دما به حد محیط زیست، مجددا انتقال شیشهای روی داده و فوم سفت شده و به آرامی به حالت اولیه بر می گردد.
منبع:
Highly Sophisticated Cell Opener for Viscoelastic Foam
Michael Krebs, Roland Hubel, Evonik Industries AG
آزمونهای فوم صندلی خودرو
گردآوری و تالیف: اصغر ناصری
آزمونهای انجام شده بر روی فومهای پلی اورتان برای تعیین خواص فیزیکی آنها از آزمایشگاهی به آزمایشگاه دیگر یا از یک ماشین به ماشین دیگر تغییرات زیادی را متحمل شده و اغلب دارای تکرارپذیری بالایی نیستند. خطاهایی از 10 تا 30 درصد در رویههای آزمون عادی بشمار میآید و بسیاری از این خطاها نتیجه برنامه ریزی ضعیف آزمون یا روش ارائه نتایج هستند. برای مثال مقایسههای بین آزمایشگاهی آزمون IFD یا خستگی خمشی[1] تفاوتهای وسیعی در نتایج را نشان میدهند. در نوشتار کوتاه زیر برخی آزمونهای انجام شده بر روی فوم معرفی شدهاند. دو منبع مورداستفاده در استخراج این مطالب عبارتند از:
Joint Industry Foam Standards and Guidelines, http://www.pfa.org/jifsg/contents.html
http://www.testresources.net/applications/test-types/indentation-ifd-test/car-seat-testing/
چگالی فوم
چگالی فومهای معمولی عددی بین 12.8 تا 40 کیلوگرم بر مترمکعب است. برای محاسبه چگالی وزن نمونه را بر حجم آن تقسیم میکنند. هرچه اندازه نمونه مورد استفاده برای اندازهگیری چگالی بزرگتر باشد، خطای اندازهگیری کوچکتر خواهد بود. تلرانس قابل قبول برای چگالی معمولا مثبت و منفی 1.6 کیلوگرم بر مترمکعب در نظر گرفته میشود. یکی از خواصی که مستقیما از چگالی تاثیر میپذیرد قابلیت دوام[2] فوم است. عمدهترین موضوع مرتبط با قابلیت دوام، کاهش خاصیت تحمل بار یا نرم شدن فوم در حین استفاده است. این خاصیت معمولا خستگی خمشی یا صرفا خستگی نامیده میشود. بطور کلی میتوان گفت با کاهش چگالی فومهای معمولی پر نشده، تمایل به خستگی افزایش مییابد. مطابق تجارب کمیتههای کاری انجمن فومهای پلی اورتانی آمریکا، فومهای پلی اورتان با چگالی 1.8 پاوند بر فوت مکعب (28.8 کیلوگرم بر مترمکعب) یا بالاتر در کاربردهای صندلی خودرو عملکرد بهتری نسبت به فومهایی با چگالی پلیمری کمتر دارند[3].
استحکام کششی
استحکام کششی[4] با استفاده از روش تصریح شده در استاندارد ASTM D3571 اندازهگیری میشود. معمولا استحکام کششی بالاتر از 55.2 کیلوپاسکال (8 psi) پذیرفتنی است. استحکام کششی به تنهایی نمیتواند ملاک رد یا قبول محمولههای فوم باشد. تغییر استحکام کششی از یک محموله به محموله دیگر شاخص بهتری برای شناسایی مسایل بالقوه است. اگر تغییرات قابل ملاحظهای در میزان استحکام کششی روی دهد تامین کننده باید مطلع شده و مابقی خواص فیزیکی یا روشهای آزمون در محموله فوم مورد سوال باید دوباره چک شود. تغییرات بزرگ در استحکام کششی می تواند نشانهای از تغییرات در سایر خواص فیزیکی باشد.
مقاومت پارگی
مقاومت در برابر پارگی[5] با استفاده از روش تصریح شده در استاندارد ASTM D-3574 سنجیده میشود. مقاومت پارگی قابل قبول ازتقریبا 1 پاوند بر اینچ شروع میشود. کمتر از این مقدار مشکلاتی در حمل و نقل فوم در کارخانه و نیز پیرامون سوراخهای ایجاد شد در فوم پدید خواهد آورد. همانند استحکام کششی، تغییرات مشهود در مقاومت پارگی از محمولهای به محموله دیگر میتواند نشانی از وجود مشکل در خط تولید فوم باشد.
افزایش طول
افزایش طول در هنگام گسیختگی[6] با استفاده ازروش تصریح شده در استاندارد ASTM D-3574 اندازهگیری میشود. معمولا افزایش طول 100 درصد مقداری پذیرفتنی است. کمتر از این مقدار میتواند باعث افزایش احتمال پارگی فوم در هنگام استفاده شود.
آزمون IFD و ILD
استحکام نشیمن صندلی خودرو توسط یک خاصیت فیزیکی به نام تغییرشکل در اثر نیروی فرورونده[7] (IFD یا ILD) سنجیده میشود. این خاصیت به صورت نیروی لازم برای ایجاد فرورفتگی به میزان معین در نمونه فوم تعریف میگردد و توسط یک ماشین تست فشار انجام میشود که پاشنهای گرد یا مستطیلی را بر فوم میفشارد. آزمونهای فوم معمولا چندین بار روی قسمت میانی و پشت صندلی تکرار میشوند تا استحکام فوم در سراسر مجموعه صندلی سنجیده شود. بنابراین در هنگام خرید تجهیزات آزمون بایستی به عامل بازدهی آزمون توجه نمود.
طبق استاندارد ASTM، کمیت IFD به صورت نیروی لازم برحسب پاوند برای فروبردن یک کفشک گرد با مساحت 50 اینچ مربع در یک نمونه فوم به میزان درصد معینی از ضخامت کل نمونه تعریف میشود. کمیت IFD باید همواره بصورت مقدار نیرو برحسب پاوند دریک درصد تغییرشکل مشخص در نمونهای از فوم با ارتفاع معین گزارش شود. برای مثال 25 pounds/ 50 in2 در 25 درصد تغیرشکل روی یک نمونه با ضخامت 4 اینچ بدین معناست که چنین نیرویی وقتی روی نمونهای از فوم با ضخامت 4 اینچ وارد شود، باعث کاهش 25 درصد در ضخامت فوم میگردد. در یک نمونه فوم، IFD همگام با ضخامت افزایش مییابد.
آزمون هیسترزیس
آزمون هیسترزیس گزینه دیگری برای انجام آزمایش روی مقاطع میانی و پشتی فوم انعطافپذیر صندلی است. این آزمون تضمینی بر این امر است که سازنده در هنگام تولید صندلی، مقدار بیش از حد لازم فوم بکار نبرده است و در عین حال استحکام فوم و راحتی مشتری را نیز میسنجد.
آزمون هیسترزیس نوعی آزمون تراکم مشابه IFD یا ILD است که استحکام و یکنواختی بالشهای صندلی خودرو را اندازه میگیرد. این آزمون اتلاف انرژی هیسترزیس در فومها را که در حقیقت اختلاف بین انرژی بارگذاری و باربرداری است، اندازه میگیرد. این آزمون که چالشهای فنی بزرگتری در بردارد از همان ماشین مورد استفاده در IFD سود میجوید. لیکن نیاز به تحلیلهای کامپیوتری بیشتری دارد. نتایج این تحلیلها جامعترین اطلاعات در مورد استحکام فوم را در اختیار قرار میدهد.
آزمون بالشتک
هنگامی که فوم به داخل قالبها ریخته شده و بالشهای گرد صتدلی ساخته میشود، ممکن است حبابها و نواقص کوچکی در فوم باقی بماند. آزمون بالشتک[8] بخش مهمی از فرایند آزمایش صندلی خودرو است زیرا نواقص موجود و استحکام کنارهها و بازوی صندلی را کنترل میکند. برخی سازندگان از مقیاسهای دستی برای آزمون بالشتک استفاده میکنند لیکن برای نیل به نرخ بارگذاری مناسب باید از ماشینهای آزمون استحکام با قابلیت کنترل سرعت استفاده کرد.