دنیای علم و تکنولوژی

دنیای علم و تکنولوژی

اخبار و مقالات مربوط به دنیای علم و تکنولوژی ترجمه شده از منابع معتبر
دنیای علم و تکنولوژی

دنیای علم و تکنولوژی

اخبار و مقالات مربوط به دنیای علم و تکنولوژی ترجمه شده از منابع معتبر

هفت معادله‌ ریاضی که جهان را تغییر دادند

معادلات ریاضی پنجره‌هایی یکتا به جهان می‌گشایند. آنها واقعیت را قابل فهم کرده و به ما کمک می‌کنند امور نامشهود را ببینیم. بنابراین شگفتی ندارد که ابداعات جدید در ریاضیات پا به پای پیشرفت ما در فهم عالم گسترش یابند. در این مقاله هفت معادله تاریخی معرفی می‌شوند که در نگرش ما از ریزترین ذرات تا تمامی گستره کیهان انقلابی ایجاد کردند.

منبع: Live Science


نظریه فیثاغورث

یکی از کهن ترین معادلات اصلی مثلثات که همه دانش آموزان در مدرسه یاد می‌گیرند، رابطه میان طول سه ضلع یک مثلث قائم الزاویه است: مجموع مربعات دو ضلع قائم مثلث راست گوشه، برابر مربع ضلع سوم (وتر) است. این معادله از 3700 سال پیش یعنی دوره زندگی بابلیان باستان شناخته شده است.

اعتبار نگاشتن این معادله به شکل امروزین خود، به نام ریاضی دان یونانی فیثاغورس ثبت شده است. نظریه فیثاغورس علاوه بر ساخت و ساز، ناوبری، نقشه کشی و سایر زمینه های مهم، در توسعه نظریه اعداد بسیار موثر  بوده است. در سده پنجم میلادی هیپارکوس متاپونتام خاطرنشان ساخت که وتر یک مثلث راست گوشه با طول ضلع 1، برابر جدر عدد 2 است که عددی ناگویا است. گفته می‌شود هیپارکوس به خاطر این کشف به دریا انداخته شد زیرا طرفداران متعصب فیثاغورس از ابراز وجود اعداد ناگویا که ارقام اعشاری غیرتکراری بی پایان دارند بر آشفته بودند.

قانون دوم نیوتن و قانون گرانش

سر آیزاک نیوتن با کشفیاتی که دنیا را تکان داد مشهور است. در زمره آنها، قانون دوم حرکت است که بیان می‌دارد نیروی وارد بر جسم با حاصل ضرب جرم در شتاب آن برابر است. بسط این قانون همراه با مشهدات دیگر او را به سوی قانون عمومی گرانش در سال 1687 رهنمون شد. G در این قانون یک ثابت بنیادی است که مقدار آن بر اساس تجربیات آزمایشگاهی تعیین شد. از این مفاهیم برای درک بسیاری دستگاه های فیزیکی از جمله حرکت سیارات به دور خورشید و سفر میان آنها با موشک های ساخت بشر استفاده شده است.

معادله موج

با استفاده از قوانین نیوتن، دانشمندان قرن هجده شروع به تحلیل تمامی پدیده های عالم کردند. در 1743 ریاضیدان فرانسوی ژان باپتیست له رون دالامبر معادله ای استخراج کرد که ارتعاشات یک سیم نوسان کننده یا حرکت موج را تشریح می کرد. دراین معادله v سرعت موج و سایر پارامترها توصیف کننده جابجایی موج در یک جهت هستند. با بسط این معادله به دو و سه بعد دانشمندان توانستند حرکت امواج آب، زمین لرزه و امواج صوتی را پیش بینی کنند. این معادله مبنای معادله شرودینگر در فیزیک کوانتم نیز گردید که زیربنای بسیاری از فناوری‌های کامپیوتری است.

معادلات فوریه

اگر حتی نام دانشمند فرانسوی ژان باپتیست ژوزف فوریه را نشنیده باشید کارهای او بر زندگی شما تاثیر گذارده است. معادلات ریاضی ابداع شده توسط او در سال 1822 به پژوهشگران امکان داد داده های پیچیده و آشفته را به ترکیبی از امواج ساده که تحلیلی آنها بسیار آسانتر است فروکاهند. تبدیل فوریه، نمادی بنیادین در زمان خود بود. این ابزار ریاضی در بسیاری از زمین های نوین علوم از جمله پردازش داده، تحلیل تصاویر، نورشناسی، ارتباطات، نجوم و مهندسی کاربرد یافته و توانسته سیستم های پیچیده را به بخش های ساده تر شکسته و قابل تحلیل نماید.

معادلات ماکسول

در اوایل سده 1800 الکتریسیته و مغناطیس هنوز مفاهیم جدیدی بوده و دانشمندان در جستجوی روشی برای تسخیر و لگام زدن به این نیروهای شگفت بودند. دانشمند اسکاتلندی جیمز کلرک ماکسول با انتشار فهرستی از 20 معادله در سال 1864 درک ما از این دو پدیده را بسیار ارتقا بخشید و رابطه میان آن دو را معلوم کرد. این معادلات بعدا به شکل 4 معادله عمومی ترکیب شدند و بنیان الکترونیک در عصر فناوری های نوین را تشکیل می‌دهند.

قانون جرم و انرژی اینشتاین

این معادله کوچک یکی از مشهورترین در دنیای علون نوین است. این معادله که برای اولین بار در 1905 توسط آلبرت اینشتاین بیان شد، بخشی از نظریه ساختارشکن نسبیت خاص بوده و نشان می‌دهد که ماده و انرژی دو جنبه مختلف یک واقعیت هستند. بدون این قانون امکان درک سازوکار تابش انرژی توسط ستارگان و ساختن شتاب دهنده های عظیم ذرات برای درک دنیا یزیراتمی وجود نداشت.

معادلات فریدمن

 

ممکن است ابداع معادلاتی که بتوانند کل کیهان را تعریف کنند بسیار مغرورانه بنظر برسد اما این همان کاری است که فیزیکدان روسی الکساندر فریدمن در دهه 1920 انجام داد. با استفاده از نظریات نسبیت اینشتاین او نشان داد که ویژگی های یک عالم در حال انبساط می توانند با استفاده از دو معادله از زمان انفجار مهبانگ (Big Bang) به بعدتوضیح داده شوند.

این معادلات تمامی ویژگی های عالم از جمله انحنای آن، میزان ماده و انرژی موجود در آن، سرعت انبساط آن و تعداد ثابت های مهم کیهانی را با هم ترکیب می کنند. سرعت نور، ثابت گرانش و ثابت هابل که شتاب انبساط عالم را تعیین می کند از این جمله هستند. مشهور است که اینشتاین ایده عالم در حال انبساط یا انقباض را دوست نداشت اما نظریه نسبیت عام او برپایه اثر گرانش این طور پیش بینی می کرد. او ثابتی به نماد لامبدا به معادلات خود افزود تا با اثر گرانش مقابله کرده و عاملی ایستا نتیجه دهد. در حالی که او این کار خود را بزرگترین اشتباهش نامید، چند دهه بعد ثابت شد چنین ثابتی واقعا وجود دارد و به فرض وجود ماده تاریک در عالم می انجامد که موجبات یک عالم با شتاب انبساطی فزاینده را ایجاب کرده است.

چرا زندگی ابدی امکان پذیر نیست؟

ترمودینامیک پیر شدن

برایان جانسون یک کارآفرین نرم افزار است که هر سال 2 میلیون دلار خرج می کند تا بدن 45 ساله خود را تا حد 18 سالگی جوان نگاه دارد. او بیش از 30 پزشک و پرستار را استخدام کرده تا عملکرد روزانه بدنه او را پایش کنند. او بیش از 110 قرص ویتامین در روز می خورد و خالص بودن تمام مواد خوراکی خود را آزمایش می کند. در اصل او جستجو به دنبال جوانی دائمی را به شغل تمام وقت خود تبدیل کرده است. در این راه نقشه ای از آنچه آموخته تهیه کرده تا به مردم برای جوان نگاه داشتن بدن خود به مدتی طولانی تر کمک کند البته اگر منابع لازم برای تکرار رویکرد پیچیده و پرهزینه او را در اختیار داشته باشند.

جانسون تنها یکی از مالکین ثروتمند اوبر (Uber) است که برای پیشگیری از پیر شدن خود میلیارذدها دلار خرج می کنند. اما ممکن است در جستجوی جوانی دائمی نهایتا در برابر مانعی بیرحم تسلیم شوند: قوانین فیزیک

فیزیک فرسودگی و از هم گسیختگی

برای پیرشدن دلایلی چند می توان ارائه کرد. استدلال تکاملی این است که هر نسلی از مخلوقات چه انسان، حیوان یا گیاه باید پیر شده و بمیرد تا جا را برای نسل جدیدی باز کند. پس اینکه بدنهای ما در نقطه ای از زمان از بازسازی خود دست می کشند یک نقص طراحی نیست، بلکه یک ویژگی ضروری است.

نظریه دیگر، نظریه پیر شدن در اثر فرسودگی (wearing-out) است. "ماشین های مولکولی" متعددی در بدن ما وجود دارند که همه کاری از کپی سازی سلولها تا جابجا کردن مواد غذایی بسوی نواحی مورد نیاز انجام می دهند. وقتی این ماشین ها به کار می پردازند، با هزاران مولکول آب احاطه می شوند که بطور تصادفی هر ثانیه تریلیون ها بار با آنها برخورد می کنند. فیزیکدانان به این پدیده جنبش گرمایی می گویند.

این جنبش گرمایی منبعی از انرژی فراهم می آورد که ماشین های مولکولی بدن می توانند برای انجام کار خود آن را تسخیر کنند. اما این انرژی مسئول شکستن پیوندهای میان مولکولها نیز هست. احتمال بقای این پیوندهای مولکولی در برابر نیروی اعمال شده درست مانند احتمال بقای انسان در برابر پیر شدن است که امکان وجود رابطه‌ای میان شکستن پیوندهای مولکولی و پیر شدن به عبارتی میان پیر شدن و جنبش گرمایی به ذهن القا می کند.

به عبارت دیگر، در طی زندگی ما فرسایش و از هم گسیختگی را تجربه  می کنیم. بر خلاف اشیای غیرحیوانی، ما می توانیم دستگاه های درونی خود را پس از چنین صدماتی ترمیم کنیم، لیکن محدودیت هایی برای این کار وجود دارد.

دکتر لئونارد هی فلیک به عنوان استاد آناتومی و میکروبیولوژی کار کرده است و در زمره برترین متخصصان پیری است. او معیاری به نام "محدوده هی فلیک" تعریف کرده سات که عبارت از تعدادی است که DNS انسان می تواند پیش از از دست دادن توانایی نسخه برداری، به تکثیر خود ادامه دهد و شکلی متفاوت مرتبط با سن به خود بگیرد. پس از عمری مطالعه دکتر هی فلیک از تعریف فرسودگی و گسیختگی پیری دفاع کرده است.

به باور او قانون دوم ترمودینامیک سبب احتمالی پیری است. این قانون بر رفتار تمام مولکولها حک.مت می کند؛ می تواند دلیل غایی تمام نظریات پیری را شرح دهد؛ با استفاده از فناری های موجود قابل آزمون است، ابطال پذیر است، عالم گیر است و در هر دو جهان مادی و غیرمادی قابلیت کاربرد دارد.

آنتروپی وضعیتی است که در آن اشیا از یک حالت منظم تر به حالتی بی نظم تر پیش می روند. این مفهوم اولین بار توسط رودلف کلازیوس در دهه 1850 تصریح شد. قانون دوم ترمودینامیک، قانون آنتروپی چنین اظهار می دارد که "اگر فرایند فیزیکی برگشت ناپذیر باشد، آنتروپی سیستم و محیط پیرامونی آن افزایش خواهد یافت؛ آنتروپی نهایی باید بزرگتر از آنتروپی نخستین باشد".

برای مثال وقتی یک سیب می خورید، میوه سفر خود را در حالتی از آنتروپی پایین آغاز می کند و با جویدن آن توسط شما آنتروپی آن افزایش می یابد. هضم و داخل شدن مواد میوه در سیستم سوختی بدن باز هم آنتروپی آن را بیشتر می کند. آنتروپی درمیان میلیاردها فرایند مولکولی در سیستم های پسچیده بدن افزایش می یابد. هرچه بیشتر عمر کنید، آنتروپی بیشتری تجربه خواهید کرد و هر موقعیت جدیدی از انتروپی می تواند به نوبه خود رشته ای از فرایندهای آنتروپیک جدید خلق کند.

آیا می توان فرایند پیری در کل بدن را آهسته کرد؟

بخشی از صدمات روی داده در بدن را می توان معکوس کرد اما با حدود 37 تریلیون سلول مختلف از 200 نوع متفاوت که همگی بر روی یکدیگر تاثیر می گذارند، تاثیرات بصورت آبشاری تداوم می یابند. به بیان ساده سیستم‌های بازسازی کننده بدن شما کم می آورند و نمی توانند تمامی تخریب های سلولی را وارونه ساخته و تعمیر کنند.

برخی مناطق دنیا به مناطق آبی موسومند: مناطقی مانند اوکیناوا در ژاپن، ساردینیا در ایتالیا، ایکاریا در یونان، نیکویا در کاستاریکا و لوما لیندا در کالیفرنیا.این مناطق دارای بیشترین تعداد صدساله ها هستند و مردم آنجا طول عمر بیشتری نسبت به سایر مناطق دارند. مردم این مناطق چهار قانون را در سبک زندگی خود رعایت می‌کنند: خردمندانه غذا می خورند؛ بطور طبیعی حرکت می کنند؛ با سایرین ارتباط دارند؛ و زندگی هدفمندانه دارند. مردم این مناطق رژیم های غذایی خاص یا مواد مکمل مصرف نمی کنند بلکه برای زندگی طولانی تر تلاش می کنند.

منبع: Popular Mechanics

ماده چیست؟ مفهومی ساده و در عین حال غامض

 

کمی بیش از یک سوم کائنات یعنی حدود 31 درصد از ماده ساخته شده است. محاسبات جدید ما را به این عدد رسانده است. ستاره شناسان از مدتها پیش بر این باور بوده اند که چیزی به غیر از ماده ملموس بیشتر واقعیت دنیای پیرامون ما را می سازد. پس در این صورت، ماده دقیقا چیست؟

یکی از نکات برجسته نظریه نسبیت خاص اینشتاین این است که ماده و انرژی قابل تفکیک نیستند. تمامی اجرام دارای انرژی ذاتی هستند. این معنای معادله مشهور اینشتاین E = mc2 است. وقتی کیهان شناسان عالم هستی را وزن کردند، هم جرم و هم انرژی را با هم اندازه گرفتند. و 31 درصد این مقدار برابر ماده موجود در هستی است، چه مشهود باشد یا نامشهود.

این اختلاف کلیدی است: تمامی ماده یکسان نیست. مقدار کمی از آن اشیایی را می سازد که می‌توانیم ببینیم یا لمس کنیم. عالم از نمونه هایی ماده که بسیار شگفت تر هستند پر شده است.

ماده چیست؟

وقتی به ماده فکر می کنیم، ممکن است اشیایی را تصور کنیم که قادر به مشاهده آنها هستیم یا شاید اجزای ساختمانی بنیادی ماده، یعنی اتمها را در نظر آوریم.

مفهوم اتم در طی سالها تکامل یافته است. اندیشمندان در طول تاریخ ایده های مبهمی درباره قابلیت تقسیم هستی به اجزای بنیادی داشته اند. اما ایده نوین درباره اتم به جان دالتون نسبت داده می شود. در 1808 این دانشمند بزرگ بریتانیایی این ایده را مطرح کرد که ذرات نادیدنی ماده را می سازند. مواد بنیادی مختلفی به نام عنصرها از اتمهایی با اندازه، جرمها و خواص متفاوت ساخته شده اند.

طرح دالتون مبتنی بر 20 عنصر بود. با ترکیب این عناصر ترکیبات شیمیایی پیچیده تر ساخته می شوند. هنگامی که شیمی دان روسی دیمیتری مندلیف یک جدول تناوبی اولیه در سال 1869 ساخت، 63 عنصر را فهرست کرد. امروزه ما 118 عنصر را می شناسیم.

اما ای کاش موضوع به همین سادگی بود. از ابتدای قرن بیستم فیزیکدانان دانسته اند که اجزای سازنده ریزتری درون اتم در گردش اند: الکترونهای سرگردان با بار منفی و هسته های چگالی که از پروتونهای مثبت و نوترونهای خنثی ساخته شده اند. اکنون می دانیم که هر عنصر دارای تعداد ثابتی پروتون در هسته اتمهای خود است.

به مرور زمان باز هم بر پیچیدگی تصویر ما از ماده افزوده شد. تا اواسط قرن بیستم فیزیکدانان به این واقعیت پی بردند که پروتونها و نوترونها نیز از ذرات ریزتری به نام کوارکها ساخته شده اند. به بیان دقیق تر، پروتونها و نوترونها هرکدام از سه کوارک ساخته شده اند: نوعی پیکربندی که فیزیکدانان به آن باریون ها می گویند. به این دلیل ماده ای که از پروتونها و نوترونها ساخته شده است ماده باریونیک نامیده می شود.

ماده ای شگفت در آسمان

در جهان پیرامون، ماده باریونیک به یکی از چهار نوع یافت می شود: جامد، مایع، گاز و پلاسما.

اما بازهم ماده به این سادگی نیست. تحت شرایطی شدید، ماده می تواند اشکال شگفت تری به خود بگیرد. در فشارهایی به قدر کافی بالا مواد می توانند به صورت مایع ابربحرانی موجود باشند که همزمان هم مایع و هم گاز است. در دماهایی بسیار پایین اتمهای متعددی ممکن است به هم بچسبند و عصاره موسوم به بوز-اینشتاین را بسازند. این اتمها به صورت یک پیکره واحد عمل می کنند و به تمامی شیوه های کوانتومی مختلف رفتار می‌کنند.

این مواد غریب منحصر به محیط های آزمایشگاهی نیستند. فقط به ستاره های نوترونی نگاه کنید: هسته های آنها که هنوز نمرده است به قدری جسیم نیستند که بتوانند در هنگام انفجار ابرنوستاره ای به شکل سیاهچاله فروریزند. در عوض هسته های آنها به درون رمبیده و نیروهای سهمگین گرانشی هسته های اتمها را از هم می گسلند و با جذب الکترونها توسط پروتونها و تبدیل آنها به نوترونها، توپ غول آسا و بسیار فشرده ای از نوترون ساخته می‌شود. یک قاشق از ماده این ستارگان نوترونی می تواند یک میلیارد تن وزن داشته باشد.

بطور بالقوه صدها میلیون ستاره نوترونی تنها در کهکشان راه شیری وجود دارد. دانشمندان بر این باورند که در اعماق این ستاره های نوترونی فشار و دماهایی چنان بالا وجود دارند که نوترونها از هم گسیخته شده و کوارکها آزاد می شوند.

فیزیکدانها برای شناخت رویدادهای نخستین پیدایش عالم به مطالعه ستارگان نوترونی م یپردازند. ماده ای که پیرامون خود می بینیم از ابتدا وجود نداشته است، بلکه پس از مهبانگ پدید آمده است. پیش از اینکه اتمها شکل بگیرند، پروتونها و نوترونها در سراسر عالم شناور بودند. حتی زودتر، پیش از آن که پروتون یا نوترونی درکار باشد تنها یک دوغاب ابرداغ از کوارک ها وجود داشت. دانشمندان می توانند این وضعیت را به گونه‌ای در شتاب دهنده‌های ذرات دوباره خلق کنند.  اما این وضعیت تنها کسری از ثانیه پایدار مانده و بسرعت ناپدید می شود. این وضعیت را با حالت دائمی درون یک ستاره نوترونی نمی توان یکسان دانست. اینجا آزمایشگاهی است که برای همیشه موجود است.

ماده در طرح فراگیر کائنات

در طی چند دهه گذشته، ستاره شناسان روشهای متعددی برای درک پارامترهای بنیادین کائنات ابداع کرده اند. آنها ساختار بزرگ مقیاس کائنات را بررسی کرده و نوسانات طریفی در چگالی ماده مشهود شناسایی کرده اند. آنها می توانند ببینند گرانش چگونه مسیر نور عبوری را تغییر می دهد.

یک روش ویژه برای اندازه گیری چگالی ماده یعنی نسبت ماده مشهود و نامشهود سازنده کائنات- ثبت تابش مایکروویو پس زمینه کیهانی ناشی از مهبانگ است. از سال 2009 تا 2013 رصدخانه پلانک مووسه فضایی اروپا این تابش پس زمینه را مورد کاوش قرار داده تا بهترین محاسبه از چگالی ماده را در اختیار دانشمندان قرار دهد: 31 درصد کائنات از ماده ساخته شده است.

تازه ترین پژوهش ها از فن متفاوتی به نام رابطه غنای جرم (mass-richness relation) استفاده می کند که با بررسی خوشه های کهکشانی و شمارش تعداد کهکشان ها در هر خوشه برای محاسبه جرم هر گروه و مهندسی معکوس چگالی ماده استفاده می کند. این فن جدید نیست لیکن هنوز تا حدی خام و پالایش نایافته است.

باز هم یادآوری می کنیم: موضوع به این سادگی نیست. تنها بخش کوچکی، حدود 15 درصد از ماده یا 3 درصد از کائنات، قابل مشاهده است. مابقی، به باور دانشمندان عبارت از ماده تاریک است. ما می توانیم موجک هایی که ماده تاریک در گرانش به جا می گذارد آشکارسازی کنیم. اما نمی توانیم آن را بطور مستقیم مشاهده کنیم.

در نتیجه، درباره ماهیت ماده تاریک مطمئن نیستیم. برخی دانشمندان بر این باورند که ماده تاریک از نوع ماده باریونیک است اما به شکلی که ما بسادگی نمی توانیم ببینیم: شاید سیاهچاله هایی باشد که در ابتدای پیدایش کائنات پدید آمده اند. سایرین بر این بارند که ماده تاریک از ذراتی تشکیل شده که با ماده معمولی بندرت واکنش می‌کنند. ممکن است مخلوطی از هر دو نوع باشد. برخی دانشمندان نیز وجود ماده تاریک را به کلی منکر می‌شوند.

اگر ماده تاریک وجود داشته باشد، ممکن است آن را با نسل جدیدی از تلسکوپها ببینیم، مانند eROSITA، رصدخانه Rubin، تلسکوپ فضایی نانسی گریس رومن و اقلیدس که می تواند حتی بخش های بزرگتریمده اندآ

 از عالم را رصد کرده و کهکشان های متنوع تری را ببیند. این ابزارهای مدرن درک ما از کل عالم را تغییر خواهند داد.

منبع: Popular Science

 

تسلیحات هسته ای چگونه عمل می کنند؟


در مرکز هر اتم هسته ای قرار دارد. شکستن آن هسته یا ترکیب دو هسته با هم می تواند مقادیر بزرگی انرژی آزاد کند. تسلیحات هسته ای از این انرژی برای ایجاد یک انفجار استفاده می کنند.

تسلیحات هسته ای با ترکیب مواد انفجاری شیمیایی، شکافت هسته ای و همجوشی هسته ای عمل می کنند. مواد انفجاری باعث متراکم شدن ماده هسته ای شده و شکافت هسته ای را موجب می شوند؛ شکافت هسته ای مقادیر عظیمی انرژی به شکل اشعه ایکس آزاد می کند که دما و فشار بالای مورد نیاز برای همجوشی را فراهم می سازد.

شکافت و همجوشی

تمامی مواد از اتمها ساخته شده اند: ساختارهایی بطور باورنکردنی خرد که ترکیبی از سه نوع ذره هستند: پروتونها، نوترونها و الکترونها.

در مرکز هر اتم یک هسته قرار دارد که در آن نوترونها و پروتونها به تنگی به هم پیوسته اند. بیشتر هسته ها نسبتا پایدار هستند به طوری که تعداد پروتونها و نوترونهای هسته آنها در گذر زمان ثابت باقی می ماند.

در طی شکافت هسته ای، هسته اتمهای سنگین خاصی به هسته های کوچکتر و سبکتر شکسته و در این فرایند انرژی زیادی آزاد می شود. این امر می تواند بطور خود به خود انجام شود اما در هسته های معینی می تواند از بیرون القا شود. اگر یک نوترون بسوی هسته ای شلیک شده و توسط آن جذب شود باعث ناپایداری و شکافت هسته ای می شود. در برخی عناصر مانند ایزوتوپهای معینی از اورانیوم و پلوتونیوم، فرایند شکافت هسته ای نوترونهای اضافی آزاد می کند که در صورت جذب توسط هسته های دیگر می توانند واکنش زنجیره ای و پیش رونده را موجب شوند

همجوشی هسته ای عکس این مسیر را طی می کند: برخی هسته های سبک وقتی تحت دما و فشار بسیار  بالا قرار می گیرند، با یکدیگر همجوشی حاصل کرده و هسته های سنگین تر می سازند. در این فرایند مقداری ماده به مقادیر عظیمی انرژی تبدیل می شود.

در تسلیحات مدرن هسته ای که هم از شکافت و هم از همجوشی استفاده می کنند، یک سرجنگی منفرد می‌تواند در کسری از ثانیه انرژی بسیار بیشتری از هر دو بمب اتمی استفاده شده در هیروشیما و ناگازاکی آزاد کند.

تمامی تسلیحات هسته ای از شکافت برای تولید یک انفجار استفاده می کنند. "پسر کوچک" نخستین سلاح هسته ای که در طی جنگ مورد استفاده قرار گرفت، با شلیک یک استوانه توخالی اورانیوم 235 بسوی یک توپی از همان ماده کار می کرد.

هیچکدام از این دو تکه برای تشکیل جرم بحرانی (حداقل ماده هسته یا مورد نیاز برای تثبیت شکافت هسته ای) کافی نیست لیکن با برخورد دو تکه، هر دو به جرم بحرانی می رسند و یک واکنش شکافت زنجیره ای روی می‌دهد.

سوخت هسته ای

تنها ایزوتوپهای خاصی از عناصری معین می توانند دچار شکافت هسته ای شوند (یک ایزوتوپ نسخه ای از یک عنصر با تعداد متفاوت نوترون در هسته است). پلوتونیوم 239 و اورانیوم 235 متداولترین ایزوتوپهای مورد استفاده در تسلیحات هسته ای هستند.

تسلیحات هسته ای مدرن کمی متفاوت عمل می کنند. جرم بحرانی به چگالی ماده بستگی دارد: با افزایش چگالی، جرم بحرانی کاهش می یابد. بجای برخورد دادن دو تکه سوخت هسته ای با جرم زیر مقدار بحرانی، تسلیحات مدرن ماده انفجاری شیمیایی را پیرامون یک کره از سوخت اورانیوم 235 یا پلوتونیم 239 با جرم زیربحرانی منفجر می کنند. نیروی ناشی از انفجار به سمت داخل جهت گرفته و کره مزبور را فشرده ساخته و اتمهای آن را به یکدیگر نزدیکتر می کند. به محض اینکه کره به نزدیکی جرم بحرانی متراکم شد، نوترونها به بیرون پرتاب می‌شوند و یک واکنش زنجیره ای شکافت را آغاز کرده و موجب انفجار هسته‌ای می‌شوند.

در سلاحهای همجوشی هسته‌ای که سلاحهای گرما-هسته ای (thermonuclear) یا هیدروژنی نیز نامیده می‌شوند، انرژی ناشی از انفجار شکافت هسته ای برای گداختن و جوش خوردن ایزوتوپهای هیدروژن استفاده می‌شود. انرژی آزاد شده توسط این سلاح یک قارچ آتشین ایجاد می کند که دمای آن به میلیونها درجه سلسیوس، در حد مرکز خورشید، می رسد.

انفجارهای صورت گرفته در تسلیحات هیدروژنی اغلب به عنوان اولیه (انفجار شیمیایی و شکافت هسته ای) و ثانویه (انفجار همجوشی متعاقب آن) توصیف می شوند. لیکن سازوکارهای عملی بسیار پیچیده تر از اینها هستند.

برای مثال یک مرحله اولیه صرفا شکافت هسته ای ناکافی است زیرا تکه پلوتونیومی پیش از اینکه بیشتر پلوتونیوم 239 بتواند شکافت هسته ای یابد، از هم گسیخته خواهد شد. در عوض واکنش می تواند با داخل کردن ایزوتوپهای دوتریم و تریتیوم در مرکز یک کره توخالی تقویت شود. با شکافت یافتن پوسته پلوتونیومی پیرامونی، گاز هیدروژن دچار همجوشی شده و نوترونهای بیشتری آزاد می کند در نتیجه شکافت هسته ای سرعت می یابد.

بطور مشابه مرحله ثانویه تنها از همجوشی خالص تشکیل نمی شود. داخل سوخت هیدروژنی چند لایه سوخت اورانیوم یا پلوتونیومی قرار دارد. انفجار اولیه سوخت لایه ای را از بیرون متراکم می کند و آن را به زیر جرم بحرانی می رساند. در نتیجه شکافت هسته ای آغاز شده و هیدروژن از درون گرم شده و واکنش های همجوشی بیشتری را موجب می شود.

 

منبع اصلی:

https://www.ucsusa.org/resources/how-nuclear-weapons-work

 

مدل استاندارد فیزیک ذره ای


مدل استاندارد فیزیک ذره ای درک فیزیک نوین از سه نیروی بنیادی طبیعت از نیروهای چهاگانه است: الکترومغناطیس، نیروی هسته ای قوی و نیروی هسته ای ضعیف.

مدل استاندارد کاملترین توصیف از دنیای زیراتمی توسط فیزیک نوین است. این مدل در طی قرن بیستم بر بنیاد مکانیک کوانتومی، بنا شد، نظریه عجیبی که رفتار ذرات در کوچکترین مقیاس ها را توصیف می‌کند. مدل استاندارد تشریح کننده سه نیروی بنیادی طبیعت یعنی الکترومغناطیس، نیروی هسته‌ای قوی و نیروی هسته‌ای ضعیف است. این نظریه هزاران بار با دقت فوق تصوری مورد آزمون قرار گرفته و با وجود کاستی هایش، یکی از مهمترین دستاوردهای علوم نوین بشمار می آید.

مدل استاندارد چگونه توسعه یافت؟

توسعه مدل استاندارد در دهه 1950 توسط فیزیکدانان، پس از یک سری اکتشافات نظری و تجربی بنیادین آغاز گردید. در سمت نظری، فیزیکدانان مکانیک کوانتومی را که در ابتدا تنها برای درک ذرات زیراتمی بود برای توضیح نیروی الکترومغناطیسی بسط دادند. در سمت تجربی قضیه، بمب اتمی تازه ابداع شده و فیزیکدانان از نیروهای هسته ای ضعیف و قوی آگاه بودند ولی توصیف کاملی از آنها نداشتند.

مدل استاندارد در دهه 1970 به شکل نوین خود متبلور شد. این کار پس از آن صورت گرفت که عناصر اصلی این مدل در جای خود قرار گرفتند: یک نظریه کوانتومی برای توصیف نیروی هسته ای قوی، امکان متحد ساختن نیروی الکترومغناطیسی و نیروی هسته ای ضعیف و کشف مکانیزم هیگز که جرم ذرات از آن ناشی می شد.

مدل استاندارد دنیای زیراتمی را به دو مقوله گسترده ذرات به نام فرمیون ها و بوزون ها سازماندهی می کند. به بیان ساده، فرمیون ها نمی توانند حالت کوانتومی یکسانی را بطور مشترک دارا باشند (به عبارتی، سطح انرژی یکسانی درئن اتم). فرمیون ها "آجرهای ساختمانی" ماده معمولی هستند که به شکل های مختلفی با هم ترکیب شده و ذرات زیراتمی شناخته شده ای مانند پروتون ها، الکترون ها و نوترون ها را می سازند.

دو نوع فرمیون وجود دارد: لپتون ها که به نیروهای الکترومغناطیسی و هسته ای ضعیف پاسخ می دهند و کوارک ها که به نیروی هسته ای قو یپاسخ می دهند. لپتون ها شامل ذره آشنای الکترون و نیز پسرعموهای سنگین تر آن میوئون و تاو هستند. این دو ذره دقیقا همان خواص الکترون را داشته منتها سنگین تر هستند.

هر کدام از این لپتون ها دارای نوترینوی متناظر به خود هستند. نوترینوها ذرات بسیار سبکی هستند که ندرتا با ماده واکنش می کنند اما در واکنش های هسته ای تولید می شوند. بنابراین نوترینوهای الکترونی، نوترینوهای میوئونی و نوترینوهای تاو داریم.

علوه بر این شش لپتون، کوارک ها نیز در شش نوع یا "طعم" مختلف هستند: کوارک بالا، پایین، افسون، شگفت، فوقانی و تحتانی. کوارک های بالا و پایین سبکترین و پایدارترین آنها هستند و در گروه های سه تایی به هم می‌پیوندند تا پروتونها و نوترونها را بسازند.

در سوی دیگر  بوزونها م یتوانند حالت انرژی یکسانی را مشترک شوند. آشناترین آنها فوتون، ذره حامل نیروی الکترومغناطیسی است. سایر بوزونهای حامل نیرو مشتمل بر سه حامل نیروی هسته  ای ضعیف (به نامهای بوزون W+، W- و Z) و هشت حامل نیروی هسته ای قوی به نام گلوئون ها هستند.

آخرین ذره بوزون به نام بوزون هیگز بسیار خاص است و نقش بسیار مهمی در مدل استاندارد ایفا می کند.

نقش مکانیزم هیگز در مدل استاندارد چیست؟

بوزون هیگز دو وظیفه مهم در مدل استاندارد به  عهده دارد. در انرژی های بالا نیروهای الکترومغناطیس و هسته ای ضعیف با هم به شکل نیرویی به نام الکترو-ضعیف (electroweak) ادغام می شوند. در انرژی های پایین (انرژی های مرسوم زندگی روزمره) این دو نیرو به شکل آشنای خود تفکیک می گردند. بوزون هیگز مسئول جدا نگاه داشتن این دو نیرو در انرژی های پایین است بطوری که نیروی هستهای ضعیف و الکترومغناطیس واکنش متفاوتی با بوزون هیگز دارند.

تمام کوارک ها و لپتونهای دیگر (به استثنای نوترینوها) نیز با بوزون هیگز واکنش می کنند. این واکنش بسته به شدت آن، به ذرات نامبرده جرم منفرد آنها را می دهد. بنابراین حضور بوزون هیگز به بسیاری از ذرات عالم امکان می دهد دارای جرم شوند.

مدل استاندارد چگونه مورد آزمون قرار گرفته است؟

آزمایش مدل استاندارد بسیار دشواراست زیرا تمامی ذرات در این مدل بسیار ریز هستند. هیچکدام از این ذرات، به استثنای شاید الکترونها، قابل مشاهده نیستند لیکن وجود آنها بطور غیرقابل مناقشه ای اثبات شده است.

مدل استاندارد از بوته آزمونهای ابر-دقیق بسیاری در طول چندین دهه پیروز بیرون آمده است. تقریبا تمامی این آزمونها شامل بکارگیری برخورد دهنده های ذرات مانند برخورد دهنده بزرگ هادرون در نزدیکی ژنو بوده اند که ذرات را با سرعت نزدیک به نور با هم برخورد می دهد. این برخوردها مقادیر عظیمی انرژی آزاد کرده و به فیزیکدانان امکان می دهند واکنش های بنیادین طبیعت را مطالعه کنند. سازمان CERN یا مرکز پژوهش های هسته ای اروپا دارنده و بهره بردار از این برخورد دهنده عظیم است. برای مثال این برخورد دهنده امکان می دهد گشتاور مغناطیسی الکترون را با دقت 13 تا 14 رقم اعشار تعیین کنند که براستی دقت حیرت آوری است.

بخشی از تونل 17 کیلومتری شتابدهنده LHC در مرکز CERN

مشکلات موجود در مدل استاندارد ذره ای

با وجود موفقیت عظیم این نظریه در توضیح گستره وسیعی از پدیده های طبیعی تحت یک چارچوب ریاضی واحد، فیزیکدانان به نواقص آن آگاه هستند. مهمتر از همه اینکه تمام تلاشها برای داخل کردن نیروی گرانش در این مدل با شکست مواجه شده است. معلوم نیست حل این مشکل چقدر به طول بیانجامد و آن را یم توان یکی از بزرگترین چالش های فرا روی علم دانست.

همچنین این مدل مکانیزمی برای جرم دادن به نوترینوها ارائه نمی کند و ماده تاریک یا انرژی تاریک را که اشکال مسلط ماده و انرژی در عالم هستند به حساب نمی آورد.

با این وجود مدل استاندارد ذره ای کماکان مهمترین مدل موجود برای توصیف دنیای زیراتمی است.

منبع: LiveScience

BIBLIOGRAPHY

Hoddeson, L. et al. "The Rise of the Standard Model: A History of Particle Physics from 1964 to 1979" (Cambridge University Press 1997)

Cottingham, W.N. and Greenwood, D. A. "An Introduction to the Standard Model of Particle Physics" (Cambridge University Press 2007)

Oerter, R. "The Theory of Almost Everything: The Standard Model, the Unsung Triumph of Modern Physics" (Pi Press 2006)

Bardin, D. and Passarino, G. "The Standard Model in the Making: Precision Study of the Electroweak Interactions" (Clarendon Press 1999)

 

 


Advertisement


دستیار تحقیق در پروژه های علمی و دانشگاهی

با بیش از 25 سال سابقه انجام پروژه های علمی و دانشگاهی

قیمت های توافقی

شماره تماس: 09360771981