دنیای علم و تکنولوژی

دنیای علم و تکنولوژی

اخبار و مقالات مربوط به دنیای علم و تکنولوژی ترجمه شده از منابع معتبر
دنیای علم و تکنولوژی

دنیای علم و تکنولوژی

اخبار و مقالات مربوط به دنیای علم و تکنولوژی ترجمه شده از منابع معتبر

ماده تاریک: راز بزرگ کیهان


در دهه 1930 یک ستاره شناس سوئیسی به نام فریتز زویکی متوجه شد کهکشان هایی که در خوشه های دوردست قرار دارند با سرعتی بسیار بیشتری از آنچه بر اثر جرم قابل رویت آنها محاسبه می شود، به دور خود می گردند.

سرعت گردش یک کهکشان به دور مرکز گرانشی خود به جرم آن بستگی دارد. هرچه جرم یک کهکشان بیشتر باشد، با سرعت بیشتری به دور مرکز گرانشی خود می گردد. زویکی با محاسبه سرعت واقعی چرخش کهکشانها متوجه شد گویی یک ماده نامرئی که می توان آن را ماده تاریک نامید، بر کهکشانها اثر گرانشی عظیمی وارد می سازد و به آنها شتاب گردش دورانی قابل ملاحظه ای تحمیل می کند.

از آن زمان تاکنون پژوهشگران تایید کرده اند که این ماده اسرارآمیز در سراسر عالم یافت شده و شش بار فراوانتر از ماده معمولی است که اشیای عادی و بدن ما انسانها را می سازد. با وجود مشاهده آثار این ماده در سراسر گیتی، دانشمندان هنوز پی به ماهیت آن نبرده اند. در مورد این ماده پرسش های بدون پاسخ فراوانی باقی مانده و هم اکنون یکی از بزرگترین رازهای علمی فراروی انسان است.

تا اینجا وجود ماده تاریک تنها یک فرضیه و حدس علمی است، زیرا بدون آن، رفتار ستاره ها، سیارات و کهکشانها غیرقابل توجیه می شود.

1. ماده تاریک چیست و چرا قابل دیدن نیست؟

ماده تاریک کاملا نامشهود است. هیچ نور یا انرژی ساتع نمی کند بنابراین با حسگرها و آشکارسازهای معمولی قابل مشاهده نیست. به باور دانشمندان، ترکیب شیمیایی این ماده باعث ماهیت غیرعادی آن می شود.

ماده مرئی که به آن ماده باریونیک نیز گفته می شود از باریون ها ساخته شده است عنوانی گسترده که برای اشاره به ذرات درون اتم مانند پروتونها، نوترونها و الکترونها بکار می رود. دانشمندان تنها می توانند حدسیاتی درباره ماهیت این ماده ابراز کنند. بیشتر دانشمندان بر این باورند که ماده تاریک از ماده غیرباریونیک ساخته شده است. مهمترین داوطلب برای این ذرات ویمپ ها هستند یعنی ذرات جسیم با برهم کنش ضعیف. این ذرات ممکن است ده تا صد برابر سنگین تر از پروتون بوده ولی برهم کنش ضعیف آنها با ماده معمولی آشکار سازیشان را دشوار سازد. ذرات پیشنهادی دیگر نوترالینوها هستند، ذرات جسیم فرضی سنگین تر و کندتر از نوترینوها. اما این ذرات هنوز آشکارسازی نشده اند. نوترینوهای استریل داوطلب بعدی هستند. نوترینوها ذراتی هستند که ماده عادی را نمی سازند. جریان پیوسته ای از نوترینوها از سوی خورشید صادر می شود اما از آنجایی که با ماده عادی بندرت واکنش می کنند، به آسانی از درون زمین و ساکنان آن می گذرند.

 سه نوع شناخته شده از نوترینو وجود دارد. نوع چهارم که نوترینوی استریل نامیده می شود ذره پیشنهادی سازنده ماده تاریک است. نوترینوی استریل تنها از طریق گرانش می تواند با ماده عادی برهم کنش داشته باشد. اما سوال اساسی این است که درصد هر کدام از این چهار نوع نوترینو چقدر است.

ذرات فرضی آکسیونهای خنثای کوچکتر و فوتینوهای بدون بار نیز داوطلبهای دیگری برای ساختار ماده تاریک هستند.

چیزی به نام ضدماده نیز وجود دارد که همانند ماده تاریک نیست. ضد ماده شامل ذراتی است که اساسا معادل ماده مرئی معمولی هستند لیکن بار مخالف دارند. این ذرات ضدپروتون یا ضد الکترون نامیده می شوند. وقتی ضد ذرات با ذرات معمولی تلاقی پیدا می کنند، انفجاری روی می دهد که نتیجه نابودی هر دو نوع ماده و ضد ماده است. ما در دنیایی زندگی می کنیم که ماده معمولی در آن شکل غالب دارد و ضد ماده آزادی یافت نشده است. در غیر ینصورت همه چیز در دنیا در اثر واکنش میان ماده و ضد ماده از میان می رفت. برخلاف ماده تاریک، فیزیکدانان می توانند ضد ماده را بطور عملی در آزمایشگاههای خود بسازند.

2. آیا ماده تاریک واقعا وجود دارد؟

دانشمندان بطور قطع پاسخ این سوال را نمی دانند. آنچه می دانیم این است که اگر به یک کهکشان نوعی نگاه کنیم، با در نظر گرفتن تمام ماده ای که به صورت ستارگان، گاز و غبار می بینیم و استفاده از قانون گرانش و حرکت نیوتن یا حتی شکل درست تر آن، قانون نسبیت عام اینشتاین، تلاش برای توصیف جنبش های این ماده مشهود ما را به پاسخ نادرست می رساند. به عبارتی سرعت گردش کهکشان به دور مرکز خود بسیار کمتر از آنچه دیده می شود، محاسبه خواهد گردید. اشیای موجود در کهکشان بسیار سریعتر از آنچه قوانین فیزیکی پیشنهاد می کند، حرکت می کنند. ماده قابل دیدن آنقدر کافی نیست که این شتاب های گرانشی بزرگ در کهکشان ها یا خوشه های کهکشانی را ایجاد کند. برای این واقعیت دو تفسیر ممکن وجود دارد:

1. ماده بیشتری وجود دارد که توسط تلسکوپها قابل دیدن نیست. ما آن را ماده تاریک می نامیم.

2. قوانین نیوتن و حتی نسبیت عام در مقیاس کهکشانها و هرچیزی بزرگتر از آنها صدق نمی کنند. بلکه باید به دنبال قانون دیگری بود که آن را قانون تغییریافته گرانش یا دینامیک تغییر یافته نیوتنی می توان نامید.

بیشتر کیهان شناسان فرض وجود ماده تاریک را معتبر می دانند. بخشی از دلیل آنها این است که نگاشتن یک نظریه موفق برای دینامیک تغییریافته نیوتنی بسیار دشوار است و نیز این که تابش پس زمینه کیهانی، یعنی امواج مایکرو ویوی که بیش از 13 میلیارد سال پیش و به هنگام جوانی عالم تشکیل شده اند نیاز به فرض همین مقدار ماده تاریک را الزام می نمایند.

3. آیا ماده تاریک دارای جرم است؟

اگر ماده تاریک براستی وجود داشته باشد باید دارای جرم باشد. ماده فاقد جرم، اثر گرانشی بر اجرام عالم نمی گذارد.

4. ما چگونه به دنبال ماده تاریک می گردیم؟

از آنجایی که ماهیت ماده تاریک بر ما معلوم نیست، برای هر فرضیه خاص در این باره یک روش جستجوی متفاوت مناسب خواهد بود. دانشمندان آشکارسازهای غول آسایی در اعماق زمین قرار داده اند تا آنها را از اثرات هرگونه جریان ذرات مزاحم پیرامونی محفوظ دارند و به دنبال سیگنال هایی که از ماده تاریک می آید گشته اند.

5. چرا تصور می کنیم ماده تاریک واقعا وجود دارد؟

پاسخ در اثرات گرانشی نهفته است. از دهه 1920 ستاره شناسان بر این باور بوده اند که کیهان بایستی ماده بیشتری از آنچه می توانیم ببینیم در خود داشته باشد زیرا نیروهای گرانشی موجود بسیار نیرومندتر از آنی هستند که ماده مشهود بتواند ایجاد کند.

ستاره شناسانی که در دهه 1970 کهکشانهای مارپیچی را مطالعه می کرده اند انتظار داشتند ماده موجود در مرکز این کهکشانها سریعتر از لبه های بیرونی حرکت کند. اما معلوم شد ستارگان در هر دو مکان با سرعت یکسانی می گردند که بدین معناست که کهکشانها جرم بیشتری از آنچه قابل مشاهده است دارند.

مطالعه گاز موجود درون کهکشانهای بیضوی نیز بر وجود جرم بیشتری درون کهکشانها دلالت داشت. اگر تنها جرم موجود درون خوشه های کهکشانی همان جرم مشهود بود، این خوشه ها بسیار پیش تر از این از هم پاشیده شده بودند.

به نظر می‌رسد کهکشانهای مختلف دارای مقادیر متفاوتی از ماده تاریک باشند. در 2016 تیمی از ستاره شناسان کهکشانی به نام سنجاقک 44 یافتند که تقریبا تماما از ماده تاریک ساخته شده بود. از سوی دیگر از سال 2018 ستاره شناسان کهکشانهایی یافته اند که به نظر می‌رسد به کلی عاری از ماده تاریک هستند.

نیروی گرانش نه تنها بر مدار ستارگان درون کهکشانها، بلکه بر مسیر نور تابش شده نیز تاثیر می گذارد. آلبرت اینشتاین در اوایل دهه 1920 نشان داد که اشیای جسیم در کیهان مسیر پرتو نور را تحت اثر گرانش خود خم کرده و تغییر می‌دهند. این پدیده لنز گرانشی نامیده می شود. با مطالعه نحوه اعوجاج در مسیر نور توسط خوشه های کهکشانی دانشمندان توانسته اند نقشه ای از ماده تاریک در کیهان ترسیم کنند. اکثریت بزرگی از جامعه ستاره شناسی دنیا هم اکنون بر وجود ماده تاریک باور دارند. با این وجود هنوز این احتمال نیز وجود دارد که ماده تاریک اساسا غیرواقعی باشد. در اینصورت باید تمامی قوانین فیزیک در ابعاد بزرگ تغییر داده شوند.

6. ماده تاریک از کجا می آید؟

بنظر می رسد ماده تاریک در سراسر کیهان به شکل یک الگوی شبکه ای منتشر شده است که خوشه های کهکشانی گره‌های این شبکه را در محل تلاقی رشته های آن تشکیل می دهند. موضوع زمانی پیچیده تر می‌شود که بنظر می رسد علاوه بر ماده تاریک نوعی انرژی تاریک نیز وجود دارد، نیروی مرموزی که باعث شتاب گرفتن انبساط عالم علیرغم مخالفت گرانش می شود.

الگوی شبکه مانند ماده تاریک که در سراسر گیتی پراکنده است.


اما ماده تاریک از کجا می آید؟ پاسخ روشنی نداریم. اما چند نظریه در این مورد وجود دارد. پژوهشی که در سال 2021 در نشریه آستروفیزیکال چاپ شد پیشنهاد کرد که ماده تاریک ممکن است در سیاهچاله ها متمرکز شده باشد، دروازه‌های نیرومندی به عالم ناچیز که بواسطه نیروی عظیم گرانشی هرچیزی در مجاورت خود را به درون می بلعند. بنابراین ماده تاریک ممکن است همراه با تمامی عناصر تشکیل دهنده عالم امروزین در سیاهچاله ها تشکیل شده باشد.

چنین پنداشته می شود که باقیمانده های ستارگان مانند کوتوله های سفید و ستارگان نوترونی نیز حاوی مقادیر عظیمی ماده تاریک باشند. و نیز به اصطلاح کوتوله های قهوه ای، ستارگان ناکامی که به اندازه کافی ماده برای آغاز واکنش هسته‌ای در مرکز خود گرد نیاورده اند.

با استفاده از حسگرهای نیرومند تلسکوپ فضایی جیمز وب و تلسکوپ اقلیدس آژانس فضایی اروپا، دانشمندان امیدوارند شواهد مستحکم تری درباره وجود و ماهیت ماده تاریک بدست آورند.

Source: Live Science


برای ویدیویی جذاب درباره ماده تاریک به لینک زیر در یوتیوب مراجعه فرمایید:


https://www.youtube.com/watch?v=PUnoYS_cYO0

کانال جدید درخت دانش

کانال یوتیوب درخت دانش  با انتشار جالب ترین مطالب در زمینه علم، فناوری، تاریخ، ادبیات و هنر سعی در غنا بخشیدن به محتوای یوتیوب به زبان فارسی دارد. از این کانال با آدرس:

@KnowledgeTree2024

دیدن فرمایید.

برخی از آخرین پست های این کانال:

استالین و راز مقبره تیمور لنگ



سیاره جهنمی


درخت دانش


نگاهی نو به علوم و فنون مختلف

خورشید چه زمان می میرد؟

خورشید زمانی خواهد مرد، اما آن لحظه ای است در میلیاردها سال بعد.

خورشید انرژی لازم برای حیات بر روی زمین را تامین می کند و بدون این ستاره ما وجود نخواهیم داشت. اما حتی ستارگان نیز عمر محدودی دارند و روزی خواهند مرد. اما جای نگرانی نیست. این واقعه حدود 5 میلیارد سال بعد اتفاق خواهد افتاد.

خورشید چه زمانی خواهد مرد؟

زمان حدود 5 میلیارد سال بعد ذخیره سوخت هیدروژن خود را به اتمام رسانده و خواهد مرد. در انتها خورشید به یک کوتوله سفید تبدیل می شود. یک کوتوله سفید عملا یک ستاره مرده است که تمام سوخت هسته ای قابل همجوشی خود را سوزانده است. یک کوتوله سفید به آرامی سردتر و سردتر می شود. این سرنوشت نهایی ستاره‌ای با جرم متوسط مانند خورشید است.

گرچه خورشید حجمی بیش از یک میلیون برابر زمین دارد، یک کوتوله سفید تقریبا به اندازه زمین است. بیشتر کوتوله های سفید از حالت فوق چگالی از ماده به نام ماده تبهگن الکترونی ساخته شده اند. در این حالت تمامی الکترونها در پایین ترین وضعیت انرژی خود هستند.

خورشید ما به عنوان یک کوتوله سفید دارای هسته یا از کربن و اکسیژن خواهد بود که باقیمانده های ناشی هز همجوشی هلیوم هستند. لایه بیرونی این کوتوله سفید شامل لایه نازکی از هیدروژن دست نخورده خواهد بود. برخی کوتوله های سفید دارای این لایه هیدروژن بیرونی نیستند زیرا سوختن هسته یا در طی فرایند تکامل آنها کامل بوده است.

برای زمین در هنگام مرگ خورشید چه اتفاقی می افتد؟

در زمان مرگ خورشید، زمین احتمالا وجود نخواهد داشت. خورشید قبل از تبدیل شدن به کوتوله سفید به آرامی انبساط می یابد. حدود 5 میلیارد سال بعد، خورشید وارد مرحله غول قرمز می شود. در طی این مرحله، خورشید هیدروژن هسته خود را به اتمام رسانده و هیدروژن موجود در لایه اطراف هسته داخلی خود را می سوزاند.

تولید انرژی در لایه های بیرونی بطور قابل ملاحظه ای افزایش یافته و ستاره شروع به گسترش می کند، تا اینکه حدود 200 بار بزرگتر شده و به حالت تعادل جدیدی می رسد. در این مرحله خورشید به حداکثر اندازه خود رسیده و زمین را خواهد بلعید.

در نقطه ای از رسیدن خورشید به اندازه بیشینه خود سوزاندن هلیوم در مرکز آن شروع می شود. همجوشی هلیوم همراه با ضربان های حرارتی است که جرم زیادی از خورشید را به بیرون پرتاب می کنند.

هم اکنون نیز زمین بتدریج آب خود را از دست می دهد. تابش فوق بنفش و بادهای خورشیدی بخار آب لایه های فوقانی جو را به هیدروژن و اکسیژن تجزیه می کنند. داده هیا ماهواره ای نشان می دهند هم اکنون زمین لایه رو به گسترشی هیدروژن در اتمسفر بیرونی خود دارد. بتدریج با افزایش تابندگی خورشید در طی یک میلیارد سال آینده زمین تمامی آب و اقیانوس های خود را از دست داده وو به سیاره مرده یا مانند مریخ تبدیل خواهد شد.

برای سایر سیارات دستگاه خورشیدی چه اتفاقی خواهد افتاد؟

از دست دادن رو به تصاعد جرم خورشید در مراحل پایانی تکامل آن، لایه های بیرونی اتمسفر مشتری، زحل، اورانوس و نپتون را از بین خواهد برد. ممکن است اجرام فوق داغ پرتاب شده که به شکل سحابی های سیاره ای در خواهند آمد بیشتر جرم این غولهای گازی را از بین ببرند بطوری که تنها اشباحی از آنها باقی بماند.

آیا ممکن است پس از مرگ خورشید دستگاه خورشیدی جدیدی شکل گیرد؟

ماده به بیرون پرتاب شده از خورشید و سیارات دیگر فضای میان ستاره ای را با عناصر سنگین مانند کربن، نیتروژن، اکسیژن، باریم، روی و لانتانوم غنا خواهد بخشید.

ابرهایی از این مواد به علاوه مواد ناشی از ستارگان دیگر می تواند ابرهای چگالی را شکل داده و در نهایت به شکل نسل جدیدی از ستارگان نو متراکم شود.

جهش ژنتیکی در گرگ های چرنوبیل

در 26 آوریل 1986 فاجعه ای بزرگ شهر کوچک چرنوبیل در مرز مشترک اوکراین و بلاروس را تکان داد. یک سری انفجار دیگهای بخار باعث ذوب شدن قلب یکی از رآکتورهای این نیروگاه شد. این فاجعه آخرالزمانی صدها هزار انسان در شهرهای مجاور نیروگاه را تحت تاثیر قرار داد و بر محیط پیرامون نیز اثراتی درازمدت داشت.

اما قریب 40 سال بعد واقعه شگفتی در حال روی دادن است. ناحیه ممنوعه چرنوبیل (CEZ=Chernobyl Exclusion Zone) که به مساحت 2500 کیلومتر مربع پیرامون نیروگاه هسته ای تعریف شده است، به آهستگی به مقر بزرگترین آزمایشات علمی دنیا در مورد اثرات بلندمدت تشعشع یونیزه کننده تبدیل می شود. در حالی که انسانها این مکان را ترک کرده اند، سایر حیوانات در آن رشد و بالندگی یافته اند.

در سال 2023 یک مطالعه علمی نشان داد گرگهای منطقه چرنوبیل تفاوت های ژنتیکی مهمی با گونه های مشابه در مناطق دیگر دارند. این گرگها که در راس هرم غذایی قرار دارند مجبور به خوردن طعمه های آلوده به تشعشع هسته ای هستند که در خاکی آلوده پرورش یافته اند. این گرگها بطور پیوسته تحت تابشی رادیواکتیو شش برابر مقدار مجاز بوده اند.

این گرگها قاعدتا باید به سرطان مبتلا می شدند، اما در طول زمان صاحب ژنهایی شده اند که مقاومت آنها در برابر سرطان را بطور قابل ملاحظه ای افزایش می دهد.

این مطالعه تایید دیگری بر اصل انتخاب طبیعی است. گرگهایی توانسته اند زنده مانده و به تکثیر خود  ادامه دهند که صاحب ژنهای مقاوم در برابر سرطان بوده اند.

منبع: Popular Mechanics

بزرگترین سیاره شناخته شده

کیهان بسیار وسیع است و شاید بی پایان باشد. در این کیهان سیاره ما ذره ای ناچیز است. حتی در دستگاه خورشیدی ما زمین در مقایسه با سیاره برجیس (مشتری، ژوپیتر) کوتوله می نماید. اما بزرگترین سیاره شناخته شده کدام است؟

پاسخ به عوامل متعددی بستگی دارد، از جمله یک سیاره چگونه تعریف می شود. در هر صورت کاندیدهای زیادی برای بزرگترین سیاره شناخته شده وجود دارد. یکی از بزرگترین سیارات شناخته شده ROXs 42Bb است، یک غول گازی که در فاصله 460 سال نوری از زمین به دور ستاره خود می گردد. این سیاره حدود نه بار جسیم تر از برجیس است و 2.5 برابر آن قطر دارد.

این سیاره با استفاده از تلسکوپ فضایی کک (Keck) بطورمستقیم مشاهده شده است. سیارات دیگری نیز وجود دارند که ابعاد و جرم آنها بطور غیرمستقیم محاسبه شده و عدم قطعیت زیادی در مورد آنها وجود دارد. اما ROXs 42Bb با اطمینان زیادی مورد مشاهده و محاسبه قرار گرفته است.

نوعی از ستاره های مرده به نام کوتوله قهوه ای وجود دارند که بسیار کوچکتر از ستارگان فعال و بزرگتر از تمامی سیارات شناخته شده هستند. هسته این اجسام چگال بقدری فشرده نیست که همجوشی هیدروژن را آغاز کند لیکن می توان ایزوتوپ هیدروژن به نام دوتریم (که هسته آن از یک پروتون و یک نوترون ساخته شده) را بگدازد.

شکل گیری ROXs 42Bb با سیاره ای گازی مانند برجیس نیز تفاوت زیادی دارد. برجیس زندگی خود را از یک هسته سنگی آغاز کرده و بتدریج غبار و گاز را پیرامون این هسته به صورت دیسکی چرخان جذب کرده است. اما ROXs 42Bb از ابتدا گازی بوده که بخش هایی از درون آن تحت اثر گرانش به درون رمبیده است.

سیاره ROXs 42Bb که به صورت نقطه ای نزدیک ستاره خود دیده می شود. منبع ویکی پدیا

مقایسه اندازه ROX 42Bb (بالا سمت راست) با برجیس و سایر سیارات بزرگ دستگاه خورشیدی

منبع:  Space.com