دنیای علم و تکنولوژی

دنیای علم و تکنولوژی

اخبار و مقالات مربوط به دنیای علم و تکنولوژی ترجمه شده از منابع معتبر
دنیای علم و تکنولوژی

دنیای علم و تکنولوژی

اخبار و مقالات مربوط به دنیای علم و تکنولوژی ترجمه شده از منابع معتبر

هفت معادله‌ ریاضی که جهان را تغییر دادند

معادلات ریاضی پنجره‌هایی یکتا به جهان می‌گشایند. آنها واقعیت را قابل فهم کرده و به ما کمک می‌کنند امور نامشهود را ببینیم. بنابراین شگفتی ندارد که ابداعات جدید در ریاضیات پا به پای پیشرفت ما در فهم عالم گسترش یابند. در این مقاله هفت معادله تاریخی معرفی می‌شوند که در نگرش ما از ریزترین ذرات تا تمامی گستره کیهان انقلابی ایجاد کردند.

منبع: Live Science


نظریه فیثاغورث

یکی از کهن ترین معادلات اصلی مثلثات که همه دانش آموزان در مدرسه یاد می‌گیرند، رابطه میان طول سه ضلع یک مثلث قائم الزاویه است: مجموع مربعات دو ضلع قائم مثلث راست گوشه، برابر مربع ضلع سوم (وتر) است. این معادله از 3700 سال پیش یعنی دوره زندگی بابلیان باستان شناخته شده است.

اعتبار نگاشتن این معادله به شکل امروزین خود، به نام ریاضی دان یونانی فیثاغورس ثبت شده است. نظریه فیثاغورس علاوه بر ساخت و ساز، ناوبری، نقشه کشی و سایر زمینه های مهم، در توسعه نظریه اعداد بسیار موثر  بوده است. در سده پنجم میلادی هیپارکوس متاپونتام خاطرنشان ساخت که وتر یک مثلث راست گوشه با طول ضلع 1، برابر جدر عدد 2 است که عددی ناگویا است. گفته می‌شود هیپارکوس به خاطر این کشف به دریا انداخته شد زیرا طرفداران متعصب فیثاغورس از ابراز وجود اعداد ناگویا که ارقام اعشاری غیرتکراری بی پایان دارند بر آشفته بودند.

قانون دوم نیوتن و قانون گرانش

سر آیزاک نیوتن با کشفیاتی که دنیا را تکان داد مشهور است. در زمره آنها، قانون دوم حرکت است که بیان می‌دارد نیروی وارد بر جسم با حاصل ضرب جرم در شتاب آن برابر است. بسط این قانون همراه با مشهدات دیگر او را به سوی قانون عمومی گرانش در سال 1687 رهنمون شد. G در این قانون یک ثابت بنیادی است که مقدار آن بر اساس تجربیات آزمایشگاهی تعیین شد. از این مفاهیم برای درک بسیاری دستگاه های فیزیکی از جمله حرکت سیارات به دور خورشید و سفر میان آنها با موشک های ساخت بشر استفاده شده است.

معادله موج

با استفاده از قوانین نیوتن، دانشمندان قرن هجده شروع به تحلیل تمامی پدیده های عالم کردند. در 1743 ریاضیدان فرانسوی ژان باپتیست له رون دالامبر معادله ای استخراج کرد که ارتعاشات یک سیم نوسان کننده یا حرکت موج را تشریح می کرد. دراین معادله v سرعت موج و سایر پارامترها توصیف کننده جابجایی موج در یک جهت هستند. با بسط این معادله به دو و سه بعد دانشمندان توانستند حرکت امواج آب، زمین لرزه و امواج صوتی را پیش بینی کنند. این معادله مبنای معادله شرودینگر در فیزیک کوانتم نیز گردید که زیربنای بسیاری از فناوری‌های کامپیوتری است.

معادلات فوریه

اگر حتی نام دانشمند فرانسوی ژان باپتیست ژوزف فوریه را نشنیده باشید کارهای او بر زندگی شما تاثیر گذارده است. معادلات ریاضی ابداع شده توسط او در سال 1822 به پژوهشگران امکان داد داده های پیچیده و آشفته را به ترکیبی از امواج ساده که تحلیلی آنها بسیار آسانتر است فروکاهند. تبدیل فوریه، نمادی بنیادین در زمان خود بود. این ابزار ریاضی در بسیاری از زمین های نوین علوم از جمله پردازش داده، تحلیل تصاویر، نورشناسی، ارتباطات، نجوم و مهندسی کاربرد یافته و توانسته سیستم های پیچیده را به بخش های ساده تر شکسته و قابل تحلیل نماید.

معادلات ماکسول

در اوایل سده 1800 الکتریسیته و مغناطیس هنوز مفاهیم جدیدی بوده و دانشمندان در جستجوی روشی برای تسخیر و لگام زدن به این نیروهای شگفت بودند. دانشمند اسکاتلندی جیمز کلرک ماکسول با انتشار فهرستی از 20 معادله در سال 1864 درک ما از این دو پدیده را بسیار ارتقا بخشید و رابطه میان آن دو را معلوم کرد. این معادلات بعدا به شکل 4 معادله عمومی ترکیب شدند و بنیان الکترونیک در عصر فناوری های نوین را تشکیل می‌دهند.

قانون جرم و انرژی اینشتاین

این معادله کوچک یکی از مشهورترین در دنیای علون نوین است. این معادله که برای اولین بار در 1905 توسط آلبرت اینشتاین بیان شد، بخشی از نظریه ساختارشکن نسبیت خاص بوده و نشان می‌دهد که ماده و انرژی دو جنبه مختلف یک واقعیت هستند. بدون این قانون امکان درک سازوکار تابش انرژی توسط ستارگان و ساختن شتاب دهنده های عظیم ذرات برای درک دنیا یزیراتمی وجود نداشت.

معادلات فریدمن

 

ممکن است ابداع معادلاتی که بتوانند کل کیهان را تعریف کنند بسیار مغرورانه بنظر برسد اما این همان کاری است که فیزیکدان روسی الکساندر فریدمن در دهه 1920 انجام داد. با استفاده از نظریات نسبیت اینشتاین او نشان داد که ویژگی های یک عالم در حال انبساط می توانند با استفاده از دو معادله از زمان انفجار مهبانگ (Big Bang) به بعدتوضیح داده شوند.

این معادلات تمامی ویژگی های عالم از جمله انحنای آن، میزان ماده و انرژی موجود در آن، سرعت انبساط آن و تعداد ثابت های مهم کیهانی را با هم ترکیب می کنند. سرعت نور، ثابت گرانش و ثابت هابل که شتاب انبساط عالم را تعیین می کند از این جمله هستند. مشهور است که اینشتاین ایده عالم در حال انبساط یا انقباض را دوست نداشت اما نظریه نسبیت عام او برپایه اثر گرانش این طور پیش بینی می کرد. او ثابتی به نماد لامبدا به معادلات خود افزود تا با اثر گرانش مقابله کرده و عاملی ایستا نتیجه دهد. در حالی که او این کار خود را بزرگترین اشتباهش نامید، چند دهه بعد ثابت شد چنین ثابتی واقعا وجود دارد و به فرض وجود ماده تاریک در عالم می انجامد که موجبات یک عالم با شتاب انبساطی فزاینده را ایجاب کرده است.

اشتباهات اینشتاین


اشتباهات اینشتاین

 


نظریات علمی اینشتاین در طول سالها مورد کنکاش دانشمندان فیزیک قرار گرفته و ابزارهای مدرن علمی بسیاری در این راه بکار گرفته شده اند. دانشمندان تلاظ بسیاری در رد کردن نظریات اینشتاین انجام داده اند و هربار اینشتاین پیروز میدان بوده است. بدین ترتیب آلبرت اینشتاین را می توان معمار دنیای نوین دانست به طوری که نظریات او امروزه ساختار فکری انسان درباره جهان پیرامون و نحوه شکل‌گیری و تکامل آن را شکل داده اند.

 

اما هیچ انسانی عاری از خطا نیست و اینشتاین نیز در مواردی اشتباهاتی انجام داده است. در این مقاله برخی از آنها را بطور مختصر بیان می کنیم.

 

1) شک در وجود ثابت گرانشی

 

اینشتاین درمعادلات ریاضی توصیف کننده گرانش و نسبیت عام، ضریبی به نام ثابت کیهانی را در نظر گرفت تا معادلات با هم توافق داشته باشند. اما این ثابت باعث می شد چنین نتیجه گیری کرد که عالم در حال انبساط است. او ثابت کیهانی خود را معتبر ندانست در حالی که در طی دهه های آتی دانشمندان ثابت کردند که جهان در حال انبساط است و سرعت انبساط همواره افزایش می یابد. به عبارتی کهکشان‌ها و ستارگان تشکیل دهنده آنها با سرعتی فزاینده از هم دور می شوند. آنها نیروی رازآمیز مسئول این انبساط را انرژی تاریک نامیده اند. هنوز ثابت کیهانی که زمانی اینشتاین در صحت وجودی آن شک کرده بود یک عامل اساسی در تعیین نحوه تعامل فضا زمان با انرژی بشمار می رود.

 

2) امواج گرانشی

 

ده سال پیش دانشمندان اعلام کردند که توانسته اند بطور مستقیم امواج گرانشی، موجک های کوچک که ساخت فضا-زمان را به ارتعاش در می آورند، آشکارسازی کنند. این رویداد موفقیت عظیمی برای نظریات اینشتاین بود که تقریبا 100 سال پیش وجود آنها را پیش بینی کرده بود. اما خود اینشتاین برای مدتی در وجود آنها شک کرده بود. امروزه به قطع می دانیم که امواج گرانشی وجود دارند و این امر روش جدیدی برای مطالعه جهان در اختیار ما قرار داده است.

 

3) نتایج ضمنی نظریات اینشتاین

 

بسیاری از بینش های نوین اینشتاین درباره جهان نتیجه آزمایشات ذهنی هوشمندانه او بود. او تنها با اندیشه ژرف درباره جهان باعث دگرگونی بزرگی در فیزیک شد. اما او خود با بسیاری از نتایج ضمنی نظریات خود مخالفت می کرد. از جمله این که تصادف بر شکل گیری دنیا حاکم است. او حتی وجود سیاهچاله ها که یکی از نتایج مهم نسبیت عام است را نادیده گرفت. قوانین فیزیک حول تکینگی موجود در مرکز سیاهچاله دچار اغتشاش می شوند و چگالی عظیم سیاهچاله ها فضا را چنان دچار انحنا می کند که نور از مسیر خود منحرف شده و در حقیقت این سیاهچاله ها به عنوان نوعی لنز گرانشی عمل می کنند. اما اینشتاین مشاهده این پدیده را غیرممکن دانسته بود در حالی که دانشمندان طی خورشیدگرفتگی‌های متعدد آن را مشاهده و اثبت کرده اند.

 

4) مسایل خانوادگی

 

آینشتاین بی شک بزرگترین دانشمند تمامی اعصار و یکی از خیره کننده ترین نوابغی است که بشریت به خود دیده است. اما در زمینه خانوادگی چندان مدبر نبود. اینشتاین با دخترخاله خود ازدواج کرد. نزدیکی ژنتیکی آن دو عواقب چندان خوشایندی نداشت. فرزندان ناشی از چنین ازدواجی معمولا از بهره هوشی بالایی برخوردار نیستند. برخلاف دختر ماری کیوری که همانند او دانشمندی بزرگ و برنده جایزه نوبل بود، هیچکدام از فرزندان اینشتاین فرد مهمی در زمینه علمی نشدند.

 

منبع اصلی:

 

http://blogs.discovermagazine.com/crux/2018/07/11/times-einstein-was-wrong-including-marrying-his-cousin/#.W76Ws9czZdh

 

 

نظریه نسبیت اینشتاین


ترجمه و توضیح: اصغر ناصری (asna50@yahoo.com)


مرجع: http://www.space.com/17661-theory-general-relativity.html

در سال 1905 البرت اینشتاین این نظریه را ارائه کرد که قوانین فیزیک برای تمامی ناظران بدن شتاب یکسان است و اینکه سرعت نور در خلاء مستقل از حرکت تمامی ناظران است. نظریه نسبیت خاص بدین گونه بیان می شود. این نظریه چارچوب جدیدی برای تمامی فیزیک ارائه کرده و مفاهیم فضا و زمان را به شیوه نوینی بیان نمود.

اینشتاین 10 سال را در تلاش برای داخل کردن شتاب در نظریه خود صرف کرد و نظریه نسبیتعام خود را به سال 1915 منتشر نمود. در این نظریه چنین عنوان می شد که اشیای پرجرم موجب ایجاد انحنا در فضا-زمان می شوند، چیزی که به عنوان گرانش احساس می شود.

 

کشش گرانش

 

تمام اشیای موجود در دنیا یک نیروی کششی بر هم وارد می کنند که به نام گرانش خوانده می شود. سر آیزاک نیوتن مقدار نیروش گرانش بین دو شیی را در هنگام تعیین فرمول های حرکت، اندازه گیری کرد. نیرویی که دو شیی را به سمت هم می کشد به جرم هرکدام و فاصله میان آنها بستگی دارد. حتی زمانی که مرکط زمین شما را بسوی خود می کشد (و در نتیجه شما را به محکمی بر روی زمین حفظ می کند) مرکز جرم شما نیز زمین را بسوی خودتان جذب می کند. اما به علت جرم بسیار زیاد زمین، نیروی کشش شما بر آن تاثیر قابل اندازه گیری بر آن ندارد. قوانین نیوتن چنین فرض می کنند که گرانش یک نیروی ذاتی هر شیی است که در طول مسافت های طولانی نیز اثر می کند.

 

آلبرت اینشتاین در نظریه نسبیت خاص خود چنین عنوان کرد که قوانین فیزیک برای تمامی ناظرین بدون شتاب یکسان هستند و نشان داد که سرعت نور در خلاء ثابت بوده و مستقل از سرعت سیر یک ناظر است. در نتیجه فضا و زمان به شکل یک محیط به هم تنیده بنام فضا-زمان وجود دارد. رویدادهایی که برای ناظری بطور همزمان اتفاق می افتند ممکن است در زمانهای متفاوتی برای ناظری دیگر روی دهند.

 

اینشتاین با کار مداوم بر روی نظریه نسبیت عام خویش، بدین واقعیت دست یافت که اشیای جسیم باعث انحنای فضا-زمان می‌شوند. تصور کنید که یک جسم سنگین را در وسط ترامپولین (تشک فنری) قرار داده اید. جسم باعث تورفتگی تشک می شود. یک گلوله شیشه ای که روی لبه تشک تورفته غلتانده شود در یک مسیر مارپیچی به سوی درون تورفتگی حرکت خواهد کرد. این عمل درست مانند کشش گرانشی یک سیاره بر روی قطعات سنگ شناور در فضا است.

 

گرچه انحنای فضا-زمان توسط ابزارهای علمی قابل دیدن یا اندازه گیری نیست، پدیده های متعددی وجود این انحنا را تایید کرده اند.

 

لنز گرانشی: نور هنگام عبوراز پیرامون یک شیی پرجرم مانند سیاهچاله خم می شود، در نتیجه جسم پرجرم مانند یک لنز بریا اشیای پشت سر خود عمل می کند. ستاره شناسان از این روش بطور منظم برای مطالعه ستارگان و کهکشانهای واقه در پشت سر اشیای جسیم استفاده می کنند.

 

صلیب اینشتاین، یک شبه ستاره (کوآزار) در صورت فلکی پگاسوس، مثالی عالی از لنز گرانشی است. این کوآزار حدود 8 میلیارد سال نوری از زمین فاصله دارد و پشت سر یک کهکشان با فاصله 400 میلیون سال نوری ازما قرار گرفته است. از این کوآزار چهار تصویر در اطراف کهکشان ایجاد می شود زیرا گرانش پرقدرت کهکشان نوری که از کوآزار به سمت ما می آید را خم می کند.


صلیب اینشتاین. یکی از جالب ترین پدیده های ناشی ازلنز گرانشی 


لنز گرانشی به دانشمندان امکان می دهد پدیده های بسیار جالبی را ببینند. ولی تا همین اواخر آنچه پیرامون لنزها دیده اند نسبتا ساکن باقیمانده است. از آنجایی که نوری که اطراف لنزها حرکت می کند مسیر متفاوتی را اتخاذ کرده و هر پرتوی به میزان متفاوتی از زمان سیر می نماید، دانشمندان قادر بودند یک ابرنوستاره را در چهار زمان متفاوت مشاهده کنند زیرا تصویر آن توسط یک کهکشان عظیم در چهار مسیر متفاوت بزرگتر می شد.

 

در یک مشاهده بسیار جالب دیگر، تلسکوپ کپلر متعلق به ناسا یک ستاره مرده یا به عبارتی کوتوله سفید را آشکارسازی کرد که به دور یک کوتوله قرمز در یک دستگاه دوتایی می گردید. گرچه کوتوله سفید پرجرم تر است، شعاع بسیار کمتری از همراه خود دارد.

 

تغییر مدار سیاره تیر. مدار سیاره تیر بواسطه انحنای فضا-زمان پیرامون خورشید پرجرم، بسیار آرام در طول زمان تغییر می کند. در چند میلیاردسال آینده، تیر حتی با زمین برخورد خواهد کرد.

 

انتقال قرمز گرانشی. تشعشع الکترومغناطیسی یک شیی در یک میدان مغناطیسی اندکی کشیده می شود. به امواج صوتی بیاندیشید که از آژیر یک آمبولانس منتشر می شود. در حالی که خودرو به سمت یک ناظر حرکت می کند، امواج صوتی به هم فشرده می شوند، اما با دورشدن وسیله نقلیه آنها کشیده می گردند. این پدیده که به نام اثر داپلر معروف است، در مورد امواج نور با همه فرکانس ها نیز رخ می دهد. در سال 1959 دو فیزیکدان به نامهای رابرت پاوند و گلن ربکا پرتوهای اشعه گامای ناشی  از آهن رادیواکتیو را به سمت بالای برجی در دانشگاه هاروارد تاباندند. اندازه گیری ها نشان می داد که فرکانس آنها اندکی کمتر از فرکانس طبیعی است. این اختلاف در نتیجه کشش گرانشی ایجاد می شود که امواج گاما را از هم باز کرده و با افزایش طول موج، فرکانس را کاهش می دهد. با کاهش فرکانس یک موج در میدان گرانشی، طول موج به انتهای قرمز طیف نزدیک می شود از این رو این اثر را انتقال قرمز اینشتاین می نامند.

 

امواج گرانشی. رویدادهای شدیدی مانند برخورد دو سیاهچاله می توانند تموج هایی در فضا-زمان تحت نام امواج گرانشی ایجاد کنند. در سال 2016 رصدخانه امواج گرانشی تداخل سنج لیزری (LIGO) اعلام کرد که شواهدی مبتنی بر برخورد دو سیاهچاله که بر مداری مارپیچ به درون هم می غلطند، یافته است. در 2014، دانشمندان اعلام کردند که با استفاده از تصویربرداری پس زمینه تلسکوپ پلاریزاسیون فراکهکشانی (BICEP2) در قطب جنوب توانسته اند امواج گرانشی بجا مانده از مهبانگ (انفجار بزرگ پدید آورنده عالم) را ردیابی کنند. اینطور تصور می شود که این امواج در پس زمینه تابش ریزموج کیهانی فرورفته اند. لیکن پژوهش بیشتر آشکار ساخت که غبار موجود برمسیر ردیابی آنها داده های مربوط به آنها را آلوده می سازد.